

CLASS: XIth
DATE:
SUBJECT: CHEMISTRY
DPP No.: 1

Topic:-THERMODYNAMICS

1.	Two mole of an ideal gas is expanded isothermally and reversibly from 1 L to 10 L at 300 K. The enthalpy change (in kJ) for the process is				
	a) 11.4	b) -11.4	c) 0	d) 4.8	
2.	A gaseous system changes from state $A(P_1,V_1,T_1)$ to $B(P_2,V_2,T_2)$, B to $C(P_3,V_3,T_3)$ and finally from C to A . The whole process may be called:				
		b) Cyclic process	c) Isobaric process	d) Spontaneous process	
3.	•		•	$O(s)$ and $H_2O(l)$ are 38.20	
	and 60.01 J mol ⁻¹ K ⁻¹ respectively. The enthalpy change for the conversion is:				
	a) 59.54 J mol^{-1}		c) 595.4 J mol ⁻¹		
4.	,			en A and $B = 0.2028\sqrt{\Delta}$.	
	[Where $\Delta = b$ ond energy of AB Geometric mean of the bond energies of A_2 and B_2] The				
	-			ly and the bond energies	
are of F – F:38 kcal mol ⁻¹ and Cl – Cl:58 kcal mol ⁻¹ . The bond energy of				•	
	a) ~ 71 kcal/mol		c) ~ 48 kcal/mol		
5.	Any series of operation so carried out that at the end, the system is back to its state is called				
	a) Boyle's cycle	b) Reversible process	c) Adiabatic process	d) Cyclic process	
6.	The heat of neutralisation of a strong acid and a strong alkali is $57.0 \text{ kJ} \text{ mol}^{-1}$. The heat released when 0.5 mole of HNO ₃ solution is mixed with 0.2 mole of KOH is				
	a) 57.0 kJ	b) 11.4 kJ	c) 28.5 kJ	d) 34.9 kJ	
7.	The Kirchhoff's equati				
	a) Pressure	b) Temperature	c) Volume	d) Molecularity	
8.	Δn values in $\Delta H = \Delta U$	+ ΔnRT may have:			
	a) Integer nature	b) Fractional value	c) Positive or negative	d) All of these	
9.	AB , A_2 and B_2 are diatomic molecules. If the bond enthalpies of A_2 , AB and B_2 are in the ratio				
	1:1:0.5 and the enthal enthalpy of A_2 ?	py of formation of <i>AB</i> fro	om A_2 and B_2 is -100 k	J mol ⁻¹ , what is the bond	
		b) 200 kJ mol^{-1}	c) 100 kI mol^{-1}	d) 300 kJ mol^{-1}	
10.	* *	ng is an intensive prop		, , -	
		b) Viscosity	•	d) All of these	

11.	The temperature of the system decreases in an				
	a) Adiabatic compression	b) Isothermal compression			
12	c) Isothermal expansion	d) Adiabatic expansion			
12.	If a refrigerator door is kept open, then we get:				
	a) Room cooled				
	b) Room heated				
	c) More heat is passed out				
1 2	d) No effect on room The enthalpy of vanorization of a liquid is 20 kJ mol^{-1} and entrapy of vanorization is 75 J mol^{-1}				
13.	The enthalpy of vaporization of a liquid is 30 kJ mol ^{-1} and entropy of vaporization is 75 J mol ^{-1} . The boiling point of liquid at 1 atm is:				
	. The boiling point of liquid at 1 atm is:	-) 450 K	4) (00 K		
1 1	a) 250 K b) 400 K	c) 450 K	d) 600 K		
14.	Which is correct about the heat of combustion?				
	a) The combustion be exothermic in some cases and endothermic in other cases				
	b) Heat of combustion is always exothermic				
	c) Its value change with temperature				
1 [d) All of the above				
13.	In an isothermal process a) $q=0$ and $\Delta E=0$ b) $q\neq 0$ and $\Delta E\neq 0$ d) $q\neq 0$ and $\Delta E\neq 0$				
	· · · · · · · · · · · · · · · · · · ·		•		
16.	The enthalpy of combustion of H_2 , cyclohexane (C_6H_{10}) and cyclohexane (C_6H_{12}) are				
	-241, -3800 and -3920 kJ per mol respecti		-		
. –	a) 121 kJ/mol b) -121 kJ/mol	c) +242 kJ/mol	d) –242 kJ/mol		
17.	For the isothermal expansion of an ideal gas				
	a) E and H increases	b) E increases but H de			
10	c) H increases but E decreases d) E and H are unaltered				
18.	Heat evolved in the reaction, $H_2 + Cl_2 \rightarrow 2HCl$ is	_	f H—H and Cl—Cl are 430		
	and 242 kJ/mol respectively. The H–Cl bond er		D. 1 = 1 . 1		
	a) 245 kJ mol ⁻¹ b) 427 kJ mol ⁻¹	c) 336 kJ mol^{-1}	d) 154 kJ mol ⁻¹		
19.	Which is not correct?				
	a) In an exothermic reaction, the enthalpy of products is less than that of reactants $AH = AH + AH$				
	b) $\Delta H_{\text{fusion}} = \Delta H_{\text{sublimation}} - \Delta H_{\text{vaporisation}}$				
	c) A reaction for which ΔH $^{\circ}$ < 0 and ΔS $^{\circ}$ > 0 is possible at all temperatures				
	ΔH is less than ΔU for the reaction,				
	d) $C(s) + (1/2)O_2 (g) \rightarrow CO_2(g)$				
20.	A cylinder of gas is assumed to contain 11.2 kg of butane (C_4H_{10}). If a normal family needs				
	20000 kJ of energy per day. The cylinder will last (Given that ΔH for combustion of butane is				
	-2658 kJ)				
	a) 20 days b) 25 days	c) 26 days	d) 24 days		