CLASS : XIth DATE : DAILY PRACTICE PROBLEMS

Solutions

SUBJECT : CHEMISTRY DPP No. : 1

Topic :- THERMODYNAMICS

1 (c) $\Delta H = nC_p \Delta T$ The process is isothermal therefore, $\Delta G = 0$ $\therefore \Delta H = 0$ 2 (b) The system returns to its original state, *i.e.*, cyclic process. 3 **(b)** $\Delta G = \Delta H - T \Delta S$; at equilibrium, $\therefore \Delta H = T \Delta S$ $\Delta G = 0$, or $\Delta H = 273 \times (60.01 - 38.20) = 5954.13 \text{ J mol}^{-1}$ 4 (a) $EN_{\rm F} \sim EN_{\rm Cl} = 0.2028 \sqrt{\Delta}$ $\Delta = \left[e_{\mathrm{F-Cl}} - \left(e_{\mathrm{F-F}} \times e_{\mathrm{Cl-Cl}} \right)^{1/2} \right]$ and $\therefore EN_{\rm F} \sim \text{EN}_{\rm Cl} = 0.2028 \left[e_{\rm F-Cl} - (e_{\rm F-F} \times e_{\rm Cl-Cl})^{1/2} \right]^{1/2}$ Or 1 = 0.2028 $\left[e_{\text{F-Cl}} - (38 \times 58)^{1/2}\right]^{1/2}$ ∴ $e_{\rm F-Cl} = 71.26 \text{ kcal mol}^{-1}$. 6 (b) 0.2 mole will neutralize 0.2 mole of HNO₃ heat evolved $= 51 \times 0.2 = 11.4$ kJ 7 **(b)** Kirchhoff's equation is : $\Delta H_2 - \Delta H_1 = \Delta C_p (T_2 - T_1)$ 8 (d) Δn depends on stoichiometry of reaction. 9 (a) $e_{A-A} = a$ Also, $\frac{1}{2}A_2 + \frac{1}{2}B_2 \rightarrow AB$; $e_{A-B} = a \ \Delta H = -100 \text{ kJ mol}^{-1}$ $e_{B-B} = 0.5a$ $\therefore \quad \Delta H = -[e_{A-B}] + \frac{1}{2} \left[e_{A-A} + e_{B-B} \right]$ $=a+\frac{1}{2}[a+0.5a]$

- 100 = -0.25 a∴ $a = 400 \text{ kJ mol}^{-1}$

10

(d)

The properties of the system whose value is independent of the amount of substance present in the system are called intensive properties *e.g.,* viscosity, surface tension, temperature, pressure etc.

11 **(d)**

When a real gas is forced through a porous plug into a region of low pressure, it is found that due to expansion, the gas on the side of low pressure gets cooled

12 **(b)**

The room got heated because heat is lost to surroundings.

13 **(b)**

$$T_b = \frac{\Delta H}{\Delta S} = \frac{30 \times 10^3}{75} = 400 \text{ K}$$

14

(d)

Heat of combustion is always exothermic; Few combustion reactions such as F_2 to F_2O , N_2 to N_2O and NO are endothermic but these reactions do not give heat of combustion because the substance should be completely oxidized. In F_2O , F_2 is reduced and N_2O and NO are not completely oxidized state of N_2 . However, three reactions are exceptions but these do not represent heat of combustion. These are,

$$N_2 + O_2 \rightarrow N_2O; \qquad \Delta H = + ve$$
$$N_2 + O_2 \rightarrow NO; \qquad \Delta H = + ve$$
and $F_2 + (1/2)O_2 \rightarrow F_2O; \quad \Delta H = +ve$

16

(b) For an isothermal process $\Delta T = 0$ and $\Delta E = 0$ and $q \neq 0$. (b) Given: (i)H₂ + $\frac{1}{2}O_2 \rightarrow H_2O$; $\Delta H = -241$ kJ (ii)C₆H₁₀ + $\frac{17}{2}O_2 \rightarrow 6CO_2 + 5H_2O$; $\Delta H = -3800$ kJ (iii)C₆H₁₂ +9O₂ $\rightarrow 6CO_2 + 6H_2O$; $\Delta H = -3920$ kJ for the reaction C₆H₁₀ + H₂ \rightarrow C₆H₁₂ [It is infact Eq.(i)+Eq.(ii) - Eq.(iii)] Thus, $\Delta H = -241 - 3800 - (-3920) = -121$ kJ (d)

17

In isothermal reversible process, ideal gas has constant volume and so, $\Delta E = 0$ and

$$\Delta H = \Delta E = 0$$

18 (a) $\Delta H = -2 \times e_{\mathrm{H-Cl}} + e_{\mathrm{H-H}} + e_{\mathrm{Cl-Cl}}$ $\therefore \quad n182 = -2 \times a + 430 + 242$ $\therefore \qquad a = 245 \text{ kJ mol}^{-1}$ 19 (d) $\Delta H = \Delta U + \Delta nRT$ $\Delta n = + 1/2$ Thus, $\Delta H > \Delta U$

20

(c)

Cylinder contains 11.2 kg or 193.10 mole butane. (: molecular mass of butane =58)

 \therefore Energy released by 1 mole of butane = -2658

∴ Energy released by 193.10 mole of butane

 $= -2658 \times 193.10$

$$= 5.13 \times 10^5 \text{ kJ}$$

 $\therefore \frac{5.13 \times 10^5}{20000} = 25.66 \text{ or } 26 \text{ days}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	В	В	А	D	В	В	D	А	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	В	В	D	В	В	D	А	D	C

