CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY
DPP No. : 1

Topic :-THERMODYNAMICS

1
(c)
$\Delta H=n C_{p} \Delta T$
The process is isothermal therefore,
$\Delta G=0$
$\therefore \Delta H=0$

2
(b)

The system returns to its original state, i.e., cyclic process.
(b)
$\Delta G=\Delta H-T \Delta S$; at equilibrium,
$\Delta G=0, \quad \therefore \Delta H=T \Delta S$
or $\Delta H=273 \times(60.01-38.20)=5954.13 \mathrm{~J} \mathrm{~mol}^{-1}$
(a)
$E N_{\mathrm{F}} \sim \mathrm{EN}_{\mathrm{Cl}}=0.2028 \sqrt{\Delta}$
and $\quad \Delta=\left[e_{\mathrm{F}-\mathrm{Cl}}-\left(e_{\mathrm{F}-\mathrm{F}} \times e_{\mathrm{Cl}-\mathrm{Cl}}\right)^{1 / 2}\right]$
$\therefore E N_{\mathrm{F}} \sim \mathrm{EN}_{\mathrm{Cl}}=0.2028\left[e_{\mathrm{F}-\mathrm{Cl}}-\left(e_{\mathrm{F}-\mathrm{F}} \times e_{\mathrm{Cl}-\mathrm{Cl}}\right)^{1 / 2}\right]^{1 / 2}$
Or $1=0.2028\left[e_{\mathrm{F}-\mathrm{Cl}}-(38 \times 58)^{1 / 2}\right]^{1 / 2}$
$\therefore \quad e_{\mathrm{F}-\mathrm{Cl}}=71.26 \mathrm{kcal} \mathrm{mol}^{-1}$.
(b)
0.2 mole will neutralize 0.2 mole of HNO_{3} heat evolved $=51 \times 0.2=11.4 \mathrm{~kJ}$
(b)

Kirchhoff's equation is : $\Delta H_{2}-\Delta H_{1}=\Delta C_{p}\left(T_{2}-T_{1}\right)$
(d)
Δn depends on stoichiometry of reaction.
(a)
$e_{A-A}=a$ Also, $\frac{1}{2} A_{2}+\frac{1}{2} B_{2} \rightarrow A B$;
$e_{A-B}=a \Delta H=-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$e_{B-B}=0.5 a$

$$
\begin{aligned}
\therefore \quad \Delta H & =-\left[e_{A-B}\right]+\frac{1}{2}\left[e_{A-A}+e_{B-B}\right] \\
& =a+\frac{1}{2}[a+0.5 a]
\end{aligned}
$$

$$
\begin{array}{ll}
& -100=-0.25 a \\
\therefore & a=400 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

(d)

The properties of the system whose value is independent of the amount of substance present in the system are called intensive properties e.g., viscosity, surface tension, temperature, pressure etc.
(d)

When a real gas is forced through a porous plug into a region of low pressure, it is found that due to expansion, the gas on the side of low pressure gets cooled
(b)

The room got heated because heat is lost to surroundings.
(b)
$T_{b}=\frac{\Delta H}{\Delta S}=\frac{30 \times 10^{3}}{75}=400 \mathrm{~K}$
(d)

Heat of combustion is always exothermic; Few combustion reactions such as F_{2} to $\mathrm{F}_{2} \mathrm{O}, \mathrm{N}_{2}$ to $\mathrm{N}_{2} \mathrm{O}$ and NO are endothermic but these reactions do not give heat of combustion because the substance should be completely oxidized. In $\mathrm{F}_{2} \mathrm{O}, \mathrm{F}_{2}$ is reduced and $\mathrm{N}_{2} \mathrm{O}$ and NO are not completely oxidized state of N_{2}. However, three reactions are exceptions but these do not represent heat of combustion. These are,

$$
\begin{array}{lr}
\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O} ; & \Delta H=+\mathrm{ve} \\
\mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO} ; & \Delta H=+\mathrm{ve}
\end{array}
$$

and $\mathrm{F}_{2}+(1 / 2) \mathrm{O}_{2} \rightarrow \mathrm{~F}_{2} \mathrm{O} ; \Delta H=+\mathrm{ve}$
(b)

For an isothermal process $\Delta T=0$ and $\Delta E=0$ and $q \neq 0$.
(b)

Given: (i) $\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} ; \Delta H=-241 \mathrm{~kJ}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{10}+\frac{17}{2} \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O} ; \Delta H=-3800 \mathrm{~kJ}$
(iii) $\mathrm{C}_{6} \mathrm{H}_{12}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} ; \Delta H=-3920 \mathrm{~kJ}$ for the reaction
$\mathrm{C}_{6} \mathrm{H}_{10}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}$
[It is infact Eq.(i)+Eq.(ii) - Eq.(iii)]
Thus, $\Delta H=-241-3800-(-3920)=-121 \mathrm{~kJ}$

Thus, $\Delta H>\Delta U$
(c)

Cylinder contains 11.2 kg or 193.10 mole butane. (\because molecular mass of butane $=58$)
\because Energy released by 1 mole of butane $=-2658$
\therefore Energy released by 193.10 mole of butane
$=-2658 \times 193.10$
$=5.13 \times 10^{5} \mathrm{~kJ}$
$\therefore \frac{5.13 \times 10^{5}}{20000}=25.66$ or 26 days

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	B	B	A	D	B	B	D	A	D			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	B	B	D	B	B	D	A	D	C			

