

Class : XIIth Date : Subject : CHEMISTRY DPP No. : 8

Topic :- Chemical Kinetics

- In a second order reaction when the concentration of both reactant are equal, the reaction is completed in 500 s. How long will it take for the reaction to go to 60% completion?

 a) 1000 s
 b) 300 s
 c) 3000 s
 d) 2000 s
- 2. The rate constant (*K*) for the reaction $2A + B \rightarrow$ Product was found to be 2.5×10^{-5} litre mol⁻¹ sec⁻¹ after 15 sec, 2.60×10^{-5} litre mol⁻¹sec⁻¹ after 30 sec and 2.55×10^{-5} litre mol⁻¹ sec⁻¹ after 50 sec. The order of reaction is:
 - a) 2 b) 3 c) Zero d) 1
- 3. The differential rate expression for the reaction $H_2 + I_2 \rightarrow 2HI$ is:

a)
$$\frac{-d[H_2]}{dt} = \frac{-d[I_2]}{dt} = \frac{-d[HI]}{dt}$$

b) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$
c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$
d) $-2 \frac{d[H_2]}{dt} = -2 \frac{d[I_2]}{dt} = \frac{d[HI]}{dt}$

- 4. For the elementary step, $(CH_3)_3 \cdot CBr(aq) \rightarrow (CH_3)_3C^+(aq) + Br^-(aq)$ the molecularity is: a) Zero b) 1 c) 2 d) Cannot ascertained
- 5. A graph plotted between log $t_{50\%} vs.\log a$ concentration is a straight line. What conclusion can you draw from the given graph?

$$\int_{\frac{1}{25}} \frac{1}{100 \text{ a} \rightarrow 2}$$

a) $n = 1, t_{1/2} = \frac{1}{K \cdot a}$ b) $n = 2, t_{1/2} = 1/a$ c) $n = 1, t_{1/2} = \frac{0.693}{K}$ d) None of the above

6. If *a* is the initial concentration then time required to decompose half of the substance for *n*th order is inversely proportional to:

	a) <i>a</i> ⁿ	b) a^{n-1}	c) a^{1-n}	d) a^{n-2}
7.	The hydrolysis of ethyl acetate,			
	$CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$ is:			
	a) First order	b) Second order	c) Third order	d)Zero order
8.	The rate law for a reaction between the substances A and B is given by rate $= k[A]^n[B]^m$. On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as			
	a) $\frac{1}{2^{m+n}}$	b) (<i>m</i> + <i>n</i>)	c) (<i>n</i> – <i>m</i>)	d) $2^{(n-m)}$
9.	For the reaction $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ The experimental data suggest rate = $k[H_2][Br_2]^{1/2}$ the molecularity and order of the reaction are respectively			
		h) 1 1	3 3	d) a 3
	a) 1, <u>-</u>	DJ 1, 1	$(1)\frac{1}{2},\frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}$
10	The vote of reaction increases with temperature due to			
10.	a) Decrease in activation energy			
	c) Increase in collision	frequency	d) Increase in concentration	
	-			
11.	In a first order reaction	rder reaction, th <mark>e con</mark> centration of the reactant is decreased from 1.0 <i>M</i> to 0.25 <i>M</i> in		
	a) 10 min^{-1}	b) 6.931 min^{-1}	c) 0.6931 min ^{-1}	d) $0.06931 {\rm min}^{-1}$
12.	2. The reaction obey I order with respect to H ₂ and ICl both H ₂ (g) + 2ICl(g) \rightarrow 2HCl(g) + I ₂ (g) Which of the following mechanism is in consistent with the given fact? Mechanism A:H ₂ (g) +2ICl \rightarrow 2HCl(g) + I ₂ (g) Mechanism B:(i) H ₂ (g) +ICl(g) $\stackrel{\text{slow}}{\longrightarrow}$ HCl(g) +HI(g)			
	(ii) $HI(g) + ICl(g) \rightarrow HCl(g) + I_2$			
	a) A and B both	b) Neither A nor B	c) A only	d) <i>B</i> only
13	3. Two reactions $A \rightarrow$ products and $B \rightarrow$ products have rate constants K_A and K_P at temp			
10.	and activation energies E_A and E_B respectively. If $K_A > K_B$ and $E_A < E_B$ and assuming that A for			
	a = b = b = b = b = b = b = b = b = b =			

- both the reactions is same, then:
- a) At higher temperatures K_A will be greater than K_B
- b) At lower temperature K_A and K_B will differ more and $K_A > K_B$
- c) As temperature rises K_A and K_B will be close to each other in magnitude
- d) All of the above

- 14. The half life for a reaction ... of temperature.
 - a) Independent
 - b) Increased with increase
 - c) Decreased with increase
 - d) Dependent
- 15. The following mechanism has been proposed for the reaction of NO with Br_2 to form NOBr NO(g) + Br₂(g) \rightleftharpoons NOBr₂(g) NOBr₂(g) + NO(g) \rightarrow 2NOBr(g) If the second step is the rate determining step, the order of the reaction with respect to NO(g) is a) 1 b) 0 c) 3 d) 2
- 16. The unit and value of rate constant and that of rate of reaction are same for
a) Zero orderb) First orderc) Second orderd) Third order
- 17. According to collision theory of reaction rates:
 - a) Every collision between reactants leads to chemical reaction
 - b) Rate of reaction is proportional to velocity of molecules
 - c) All reactions which occur in gaseous phase are zero order reactions
 - d) Rate of reaction is directly proportional to collision frequency
- 18. Half-life of a reaction is found to be inversely proportional to the cube of initial concentration. The order of reaction is
 a) 4 b) 3 c) 5 d) 2
- 19. A reaction involving two different reactants can never bea) Bimolecular reactionb) Second order reaction
 - c) First order reaction d) Unimolecular reaction
- 20. For the non-equilibrium process, $A + B \rightarrow$ Products, the rate is first order with respect to A and second order respect to B. If 1.0 mole each of A and B are introduced into a 1 litre vessel and the initial rate was 1.0×10^{-2} mol/litre-sec. The rate (in mol litre⁻¹sec⁻¹) when half of the reactants have been used:

```
a) 1.2 \times 10^{-3} b) 1.2 \times 10^{-2} c) 2.5 \times 10^{-4} d) None of these
```