Class: XIIth
Date :

Topic :- Chemical Kinetics

1
(c)
$k=\frac{1}{t}\left[\frac{x}{a(a-x)}\right]$
$k=\frac{1}{500}\left[\frac{0.2 a}{a(a-0.2 a)}\right]$
$k=\frac{1}{2000 a}$
$\frac{1}{2000 a}=\frac{1}{t}\left[\frac{0.6 a}{a(a-0.6 a)}\right]$
$t=3000 \mathrm{~s}$

2
(a)

A pseudounimolecular reaction.
8
(a)
(d)

Follow review of rate of reaction.
(b) step of reaction.
(c)
$t_{1 / 2} \propto(a)^{1-n}$
or $\quad t_{1 / 2}=Z(a)^{1-n}$
or $\quad \log _{t_{1} / 2}=\log Z+(1-n) \log a$
or $\quad y=c+m x$
Thus, slope $=m=1-n$ or $1-n=0 \therefore n=1$
and for I order reaction $t_{1 / 2}=\frac{0.693}{K}$.
(c)
$t_{1 / 2} \propto(a)^{1-n}$
(d)
K does not change with time; also unit of K suggest it to be II order.

Molecularity represents the number of molecules of reactants taking part in an elementary

Rate becomes x^{y} times if concentration is made x time of a reactant giving $y^{\text {th }}$ order reaction.
Rate $=\mathrm{k}[A]^{n}[B]^{m}$
Concentration of A is doubled hence $\mathrm{x}=2, \mathrm{y}=\mathrm{n}$ and rate becomes $=2^{n}$ times
Concentration of B is halved, hence $x=\frac{1}{2}$ and $y=m$ and rate becomes $=\left(\frac{1}{2}\right)^{m}$ times
Net rate becomes $=(2)^{n}\left(\frac{1}{2}\right)^{m}$ times
$=(2)^{n-m}$ times

9
(d)

For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
Rate of reaction $=k\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}$
Molecularity of reaction $=1+1=2$
Order of reaction $=1+\frac{1}{2}=\frac{3}{2}$
(c)

When heat energy is supplied, kinetic energy of reactant molecules increase. This will increase the number of collisions and ultimately rate of reaction will be enhanced.
(d)

$$
\begin{aligned}
& t=\frac{2.303}{K} \log \frac{a}{(a-x)} \\
& \begin{aligned}
\therefore \quad K & =\frac{2.303}{20} \log \frac{1}{0.25} \\
& =0.06931 \mathrm{~min}^{-1}
\end{aligned}
\end{aligned}
$$

(d)

I step of mechanism B shows I order in both reactants.
(d)
$K_{a}=A e^{-E_{a} / R T}$ and $K_{b}=A e^{-E_{b} / R T}$
Also, $K_{a}>K_{b}$
$E_{a}<E_{b}$
Now notice that all the given facts are satisfied.
(c)

Half-life depends upon rate constant and rate constant (K) varies with temperature as $K=A \cdot e^{-E_{n} / R T} ; K$ increase with temperature. Also $t_{1 / 2} \propto \frac{1}{K}$
(d)

Rate $=k\left[\mathrm{NOBr}_{2}\right][\mathrm{NO}]$
But NOBr_{2} is in equilibrium
$k_{e q}=\frac{\left[N O B r_{2}\right]}{[N O]\left[B r_{2}\right]}$
$\left[\mathrm{NOBr}_{2}\right]=k_{e q}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right] \ldots$ (ii)
Putting the $\left[\mathrm{NOBr}_{2}\right]$ in (i)
rate $=k . k_{e q}[N O]\left[\mathrm{Br}_{2}\right][\mathrm{NO}]$
Hence, rate $=k . k_{e q}[N O]^{2}\left[B r_{2}\right]$
rate $=k^{\prime}[N O]^{2}\left[B r_{2}\right]$
where, k^{\prime}.Keq
the order, of reaction with respect to $\mathrm{NO}(\mathrm{g})$ is 2
(a)

For zero order reaction, for example,
$A \rightarrow B$
$\frac{-d[A]}{d t}=k[A]^{0}$
$\frac{-d[A]}{d t}=k$
(d)

The increase in collision frequency brings in an increase in effective collisions and thus, rate of reaction increases.
(a)
$t_{1 / 2} \propto \frac{1}{a^{n-1}}$
When $n=4$
$t_{1 / 2} \propto \frac{1}{a^{3}}$
Hence, order of reaction $=4$
(d)

There are two different reactants (say A and B).
$A+B \rightarrow$ product
Thus, it is a bimolecular reaction .
If $\quad \frac{d x}{d t}=k[A][B]$
It is second order reaction
If $\quad\left(\frac{d x}{d t}\right)=k[A]$
Or $\quad=\mathrm{k}[\mathrm{B}]$
It is first order reaction.
Molecularity is independent of rate ,but is the sum of the reacting substance thus it cannot be unimolecular reaction.
(a)
rate $=K[A][B]^{2}$
$\therefore \quad 10^{-2}=K[1][1]^{2}$
or $\quad K=10^{-2}$ litre $^{2} \mathrm{~mol}^{-2} \mathrm{sec}^{-1}$
$\therefore \quad$ rate $\mathrm{II}=10^{-2}[0.5] \times[0.5]^{2}$
$=1.2 \times 10^{-3} \mathrm{~mol} /$ litre-sec

ANSWER-KEY										
Q.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
A.	\mathbf{C}	\mathbf{A}	\mathbf{D}	\mathbf{B}	\mathbf{C}	\mathbf{C}	\mathbf{A}	\mathbf{D}	\mathbf{D}	\mathbf{C}
Q.	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$
A.	D	D	D	C	D	A	D	A	D	A

