

Class: XIIth Date:

**Solutions** 

Subject : CHEMISTRY

**DPP No.:8** 

## **Topic:- Chemical Kinetics**

$$k = \frac{1}{t} \left[ \frac{x}{a(a-x)} \right]$$

$$k = \frac{1}{500} \left[ \frac{0.2a}{a(a - 0.2a)} \right]$$

$$k = \frac{1}{2000a}$$

$$\frac{1}{2000a} = \frac{1}{t} \left[ \frac{0.6a}{a(a - 0.6a)} \right]$$

$$t = 3000 \text{ s}$$

2 **(a)** 

K does not change with time; also unit of K suggest it to be II order.

3 **(d**)

Follow review of rate of reaction.

4 **(b**)

Molecularity represents the number of molecules of reactants taking part in an elementary step of reaction.

5 **(c)** 

$$t_{1/2} \propto (a)^{1-n}$$

or 
$$t_{1/2} = Z(a)^{1-n}$$

or 
$$\log_{t_1/2} = \log Z + (1-n)\log a$$

or 
$$y = c + mx$$

Thus, slope = 
$$m = 1 - n$$
 or  $1 - n = 0$  :  $n = 1$ 

and for I order reaction  $t_{1/2} = \frac{0.693}{\kappa}$ .

6 **(c)** 

$$t_{1/2} \propto (a)^{1-n}$$

7 **(a**)

A pseudounimolecular reaction.

8 **(d)** 

Rate becomes  $x^y$  times if concentration is made x time of a reactant giving  $y^{th}$  order reaction.

Rate = $k[A]^n[B]^m$ 

Concentration of A is doubled hence x=2, y=n and rate becomes  $=2^n$  times Concentration of B is halved ,hence  $x=\frac{1}{2}$  and y=m and rate becomes  $=\left(\frac{1}{2}\right)^m$  times

Net rate becomes= $(2)^n \left(\frac{1}{2}\right)^m$  times

$$=(2)^{n-m}$$
times

9 **(d)** 

For the reaction  $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ 

Rate of reaction =  $k[H_2][Br_2]^{1/2}$ 

Molecularity of reaction = 1 + 1 = 2

Order of reaction =  $1 + \frac{1}{2} = \frac{3}{2}$ 

10 **(c)** 

When heat energy is supplied, kinetic energy of reactant molecules increase. This will increase the number of collisions and ultimately rate of reaction will be enhanced.

11 **(d**)

$$t = \frac{2.303}{K} \log \frac{a}{(a-x)}$$

$$K = \frac{2.303}{20} \log \frac{1}{0.25}$$

$$= 0.06931 \text{ min}^{-1}$$

12 **(d)** 

I step of mechanism *B* shows I order in both reactants.

13 **(d** 

$$K_a = Ae^{-E_a/RT}$$
 and  $K_b = Ae^{-E_b/RT}$ 

Also, 
$$K_a > K_b$$

$$E_a < E_b$$

Now notice that all the given facts are satisfied.

14 (c)

Half-life depends upon rate constant and rate constant (K) varies with temperature as  $K = A \cdot e^{-E_n/RT}$ ; K increase with temperature. Also  $t_{1/2} \propto \frac{1}{K}$ 

15 **(d** 

$$Rate = k[NOBr_2][NO]$$
 ...(i)

But  $NOBr_2$  is in equilibrium

$$k_{eq} = \frac{[NOBr_2]}{[NO][Br_2]}$$

$$[NOBr_2] = k_{eq}[NO][Br_2]$$
 ...(ii)

Putting the 
$$[NOBr_2]$$
 in (i)

$$rate = k.k_{eq}[NO][Br_2][NO]$$

Hence, 
$$rate = k.k_{eq}[NO]^2[Br_2]$$

$$rate = k'[NO]^2[Br_2]$$

where, k'.Keq

the order, of reaction with respect to NO(g) is 2

16 **(a)** 

For zero order reaction, for example,

 $A \rightarrow B$ 

$$\frac{-d[A]}{dt} = k[A]^0$$

$$\frac{-d[A]}{dt} = k$$

17 **(d)** 

The increase in collision frequency brings in an increase in effective collisions and thus, rate of reaction increases.

18 **(a**)

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

When n = 4

$$t_{1/2} \propto \frac{1}{a^3}$$

Hence, order of reaction = 4

19 **(d** 

There are two different reactants (say A and B).

 $A + B \rightarrow product$ 

Thus, it is a bimolecular reaction.

If 
$$\frac{dx}{dt} = k[A][B]$$

It is second order reaction

If 
$$\left(\frac{dx}{dt}\right) = k[A]$$

Or 
$$=k[B]$$

It is first order reaction.

Molecularity is independent of rate ,but is the sum of the reacting substance thus it cannot be unimolecular reaction .

20 **(a)** 

$$rate = K[A][B]^2$$

$$10^{-2} = K[1][1]^2$$

or 
$$K = 10^{-2} \, \text{litre}^2 \, \text{mol}^{-2} \, \text{sec}^{-1}$$

∴ rate II = 
$$10^{-2}[0.5] \times [0.5]^2$$
  
=  $1.2 \times 10^{-3}$ mol/litre-sec



| ANSWER-KEY |    |    |    |    |    |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|
| Q.         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
| A.         | C  | A  | D  | В  | C  | С  | A  | D  | D  | C  |
|            |    |    |    |    |    |    |    |    |    |    |
| Q.         | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A.         | D  | D  | D  | С  | D  | A  | D  | A  | D  | A  |
|            |    |    |    |    |    |    |    |    |    |    |

