

Class : XIIth Date : Subject : CHEMISTRY DPP No. : 7

Topic :- Chemical Kinetics

- The activation energy of a reaction is zero. The rate constant for the reaction

 a) Decreases with decrease of temp
 b) Increases with increase of temp
 d) Is nearly independent of temp
- 2. The burning of coal represented by the equation; $C(s) + O_2(g) \rightarrow CO_2(g)$. The rate of this reaction is increased by:
 - a) Decrease in the concentration of oxygen
 - b) Powdering the lumps of coal
 - c) Decreasing the temperature
 - d) Providing inert atmosphere for burning
- 3. At room temperature, the reaction between NO and O_2 to give NO₂ is fast, while that between CO and O_2 is slow. It is due to:
 - a) CO is smaller in size than that of NO
 - b) CO is poisonous
 - The activation energy for the reaction,
 - c) $2NO + O_2 \rightarrow 2NO_2$ is less than $2CO + O_2 \rightarrow 2CO_2$
 - d) None of the above
- 4. The rate of first order reaction is $1.5 \times 10^{-2} mol L^{-1}$ min at 0.5 M concentration of the reactant. The half-life of reaction is a) 0.383 min b) 23.1 min c) 8.73 min d) 7.53 min
- 5. The rate constant of a first order reaction at 27° C is 10^{-3} min⁻¹. The temperature coefficient of this reaction is 2. What is the rate constant (in min⁻¹) at 17° C for this reaction? a) 10^{-3} b) 5×10^{-4} c) 2×10^{-3} d) 10^{-2}
- 6. The minimum energy required for the reacting molecules to undergo reaction is
 a) Potential energy
 b) Kinetic energy
 c) Thermal energy
 d) Activation energy

- 7. The decomposition of N_2O_5 occur as $2N_2O_5 \rightarrow 4NO_2 + O_2$, and follows Ist order kinetics, hancea) The reaction is unimolecularb) The reaction is bimolecularc) $t_{1/2} \propto a^0$ d) None of the above
- 8. The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about
 a) 10 times
 b) 24 times
 c) 32 times
 d) 64 times
- 9. Which of the following statement is incorrect about the molecularity of a reaction?
 - a) Molecularity of a reaction is the number of molecules of the reactants presents in the balanced equation
 - b) Molecularity of a reaction is the number of molecules in the slowest step
 - c) Molecularity is always a whole number
 - d) There is no difference between order and molecularity of a reaction
- 10. For a reaction $A + B \rightarrow$ Products, the rate of the reaction was doubled when the concentration of *A* was doubled. When the concentration of *A* and *B* were doubled, the rate was again doubled, the order of the reaction with respect to *A* and *B* are:
 - a) 1, 1 b) 2<mark>, 0 c) 1, 0 d) 0, 1</mark>
- 11. An exothermic chemical reaction occurs in two steps as follows
 - (I) $A + B \rightarrow X$ (fast)
 - (II) $X \rightarrow AB$ (slow)

The progress of the reaction can be best represented by

d)All are correct

- 12. According to the Arrhenius equation a straight line is to be obtained by plotting the logarithm of the rate constant of a chemical reaction (log k) against
 - a) T b) $\log T$ c) $\frac{1}{T}$ d) $\log \frac{1}{T}$
- 13. The rate constant is numerically the same for three reactions of first, second and third order respectively. Which one is true for rate of three reaction? a) $r_1 = r_2 = r_3$ b) $r_1 > r_2 > r_3$ c) $r_1 < r_2 < r_3$ d) All of these
- 14. Mathematical expression for $t_{1/4}$ i.e., when (1/4)th reaction is over following first order kinetics can be given by

a)
$$t_{1/2} = \frac{2.303}{k} \log 4$$
 b) $t_{1/2} = \frac{2.303}{k} \log 2$ c) $t_{1/2} = \frac{2.303}{k} \log \frac{4}{3}$ d) $t_{1/2} = \frac{2.303}{k} \log \frac{3}{4}$

15. The rate of reaction:

 $2NO + Cl_2 \rightarrow 2NOCl$ is given by the rate, equation rate $= k[NO]^2[Cl_2]$. The value of the rate constant can be increased by:

- a) Increasing the temperature
- b) Increasing the concentration of NO
- c) Increasing the concentration of the Cl₂
- d) Doing all of these
- 16. A reaction was observed for 15 days and the percentage of the reactant remaining after the days indicated was recorded in the following table.

Time (days)	% Reactant remaining							
0	100							
2	50							
4	39							
6	25							
8	21							
10	18							
12	15							
14	12.5							
15	10							
		. 1	.1	1	1.1	1	10.110	C . 1

Which one of following bes<mark>t desc</mark>ribes the order and the half-life of the reaction?

Reaction order	Half-life <mark>(days</mark>)		
a) First	2	b) First	6
c) Second	2	d) Zero	6

17. In the reaction

 $BrO_3^-(aq) + 5Br^-(aq) + 6H^+ \rightarrow 3Br_2(l) + 3H_2O(l)$

The rate of appearance of bromine (Br₂) is related to rate of disappearance of bromide ions as following:

a)
$$\frac{d(Br_2)}{dt} = \frac{3}{5} \frac{d(Br^-)}{dt}$$
 b) $\frac{d(Br_2)}{dt} = -\frac{3}{5} \frac{d(Br^-)}{dt}$ c) $\frac{d(Br_2)}{dt} = -\frac{5}{3} \frac{d(Br^-)}{dt}$ d) $\frac{d(Br_2)}{dt} = \frac{5}{3} \frac{d(Br^-)}{dt}$

18. Which one of the following is a second order reaction?

a) $H_2 + Br_2 \rightarrow 2HBr$	b) $NH_4NO_3 \rightarrow N_2 + 3H_2O$
c) $H_2 + Cl_2 \xrightarrow{\text{Sunlight}} 2HCl$	d) $CH_3COOCH_3 + NaOH \rightarrow CH_3COONa + H_2O$

19. The temperature coefficient of most of the reactions lies between
a) 1 and 3b) 2 and 3c) 1 and 4d) 2 and 4

- 20. In respect of the equation $k = Ae^{-E_{\alpha}/RT}$ in chemical kinetics, which one of the statement is correct?
 - a) *R* is Rydberg constant
 - c) E_a is energy of activation

b) *K* is equilibrium constantd) *A* is adsorption factor

PE