

Class : XIIth Date : Subject : CHEMISTRY DPP No. : 6

## **Topic :- Chemical Kinetics**

- 1. The rate of chemical reaction (except zero order):
  - a) Decreases from moment to moment
  - b) Remains constant throughout
  - c) Is independent of the order of reaction
  - d) None of the above
- 2. For a zero order reaction a)  $t_{1/2} \propto R_0$  b)  $t_{1/2} \propto 1/R_0$  c)  $t_{1/2} \propto R_0^2$  d)  $t_{1/2} \propto 1/R_0^2$
- 3. Effect of temperature on reaction rate is given by
  - a) Claisen-Clapeyron equation
  - c) Gibbs Helmholtz equatio<mark>n</mark>

b) Arrhenius equation d) Kirchoff's equation

4. The Arrhenius equation expressing the effect of temperature on the rate constant of reaction is:

a)  $K = \frac{E_a}{RT}$  b)  $K = Ae^{-E_a/RT}$  c)  $K = \log_e \frac{E_a}{RT}$  d)  $K = e^{-Ea/RT}$ 

- 5. Find the two third life  $(t_{1/2})$  of a first order reaction in which  $k = 5.48 \times 10^{-14}$  per second a)  $201 \times 10^{13}s$  b)  $2.01 \times 10^{13}s$  c)  $201 \times 10^{20}s$  d)  $0.201 \times 10^{10}s$
- 6.  $A + B \rightarrow \text{Product}$

If concentration of A is doubled, rate increases 4 times. If concentration of A and B are doubled, rate increases 8 times. The differential rate equation of the reaction will be

a) 
$$\frac{dC}{dt} = kC_A \times C_B$$
 b)  $\frac{dC}{dt} = kC_A^2 \times C_B^3$  c)  $\frac{dC}{dt} = kC_A^2 \times C_B$  d)  $\frac{dC}{dt} = kC_A^2 \times C_B$ 

- 7. For the reaction A→B, the rate expression is r = k[A]<sup>n</sup>. When the concentration of A is doubled, the rate of reaction is quadrupled. The value of n is
  a) 1 b) Zero c) 3 d) 2
- 8. The rate constant for the first order reaction is  $60 \ s^{-1}$ . How much time will it take to reduce the concentration of the reaction to 1/16 M value ? a)  $4.6 \times 10^{-2}s$  b)  $4.6 \times 10^4 s$  c)  $4.6 \times 10^2 s$  d)  $4.6 \times 10^{-4} s$

| 9.  | In the reaction,<br>$2N_2O_5 \rightarrow 4NO_2 + O_2$ initial pressure is 500 atm and rate constant k is<br>$3.38 \times 10^{-5}s^{-1}$ after 10 min the final pressure of $N_2O_5$ is |                                                    |                                       |                                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------|-----------------------------------------|
|     | a) 490 atm                                                                                                                                                                             | b) 250 atm                                         | c) 480 atm                            | d)420 atm                               |
| 10. | For a chemical reaction<br>a) Order                                                                                                                                                    | n, can never to a frac<br>b) Half life             | tion<br>c) Rate constant              | d) Molecularity                         |
| 11. | . The time taken for the completion of 3/4 of a first order reaction is                                                                                                                |                                                    |                                       |                                         |
|     | a) (2.303/k) log 3/4                                                                                                                                                                   | b) $(2.303/k)\log 4$                               | c) (2.303/k) log 1/4                  | d) <sup>(2.303/0.75)</sup> log <i>k</i> |
|     |                                                                                                                                                                                        |                                                    |                                       |                                         |
| 12. | . $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$<br>What is the ratio of the rate of decomposition of $N_2O_5$ to rate of formation of $O_2$ ?                                             |                                                    |                                       |                                         |
|     |                                                                                                                                                                                        |                                                    |                                       |                                         |
|     | a) 1:2                                                                                                                                                                                 | b)2:1                                              | c) 1:4                                | d)4:1                                   |
| 13. | . A first order reaction is 75% complete after 32 min. when was 50% of the reaction complet                                                                                            |                                                    |                                       |                                         |
|     | a) 16 min                                                                                                                                                                              | b)8 min                                            | c) 4 min                              | d) 32 min                               |
| 1.4 |                                                                                                                                                                                        | dī                                                 |                                       |                                         |
| 14. | For a reaction, $A + 2B$ -                                                                                                                                                             | $\rightarrow C$ , rate is given by $+\frac{dL}{d}$ | $\frac{d}{dt} = k[A][B]$ , hence, the | order of the reaction is                |
|     | a) 3                                                                                                                                                                                   | b) 2                                               | c) 1                                  | d)0                                     |
| 15. | The accompanying figu                                                                                                                                                                  | ure depicts the change in                          | concentration of specie               | es X and Y for the                      |
|     | reaction $X \rightarrow Y$ , as a function of time. The point of intersection of the two curves represents:                                                                            |                                                    |                                       |                                         |
|     | 0.4<br>0.4<br>x<br>gg - 0.2-                                                                                                                                                           |                                                    |                                       | -                                       |

16. The rate constant of a reaction at temperature 200 K is 10 times less than the rate constant at<br/>400 K. What is the activation energy  $(E_a)$  of the reaction?a) 1842.4 Rb) 921.2 Rc) 460.6 Rd) 230.3 R

0

a) t<sub>1/2</sub> b) t<sub>3/4</sub> c) t<sub>2/3</sub> Time →

d) Data is insufficient to predict

- 17. A zero order reaction is one:
  - a) In which reactants do not react
  - b) In which one of the reactants is in large excess

b)1

- c) Whose rate does not change with time
- d) Whose rate increases with time
- 18. In a first order reaction the a/(a x) was found to be 8 after 10 minute. The rate constant is: a)  $(2.303 \times 3 \log 2)/10$  b)  $(2.303 \times 2 \log 3)/10$  c)  $10 \times 2.303 \times 2 \log 3$  d)  $10 \times 2.303 \times 3 \log 2$
- 19. If the rate of reaction  $A \rightarrow B$  doubles on increasing the concentration of A by 4 times, the order of the reaction is

c)  $\frac{1}{2}$ 

a) 2

- 20. The rate of chemical reaction
  - a) Increase as the reaction proceeds
  - c) May increase or decrease during reaction
- b) Decrease the reaction proceeds
- d) Remains constant as the reaction proceeds

d)4

