

Class : XIIth Date :

Solutions

Subject : CHEMISTRY DPP No. : 3

Topic :- Chemical Kinetics

1

(c) $K_1 = 10^{16} e^{-2000/T}; K_2 = 10^{15} e^{-1000/T}$ if $K_1 = K_2$ then $10^{16} e^{-2000/T} = 10^{15} e^{-1000/T}$ or $\log 10 - \frac{2000}{T} = -\frac{1000}{T}$ or $T = \frac{1000}{2.303}$ K

2

(c)

(c)

As we know that, rate of reaction is directly proportional to concentration of reactant and inversely proportional to the volume of vessel.

i.e., concentration $\alpha \propto \frac{n}{v}$

For a given reaction, $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ Rate of reaction= $k[NO]^2[O_2]$

If volume of vessel is reduced by $\frac{1}{3}rd$ of its initial value, then concentration of compound is increase by 3 times. Hence, the rate of reaction will be increased by 27 times.

3

4

For a zero order reaction

$$k_{0} = \frac{[A_{0}]}{2t_{1/2}}$$

Since, $[A]_{0} = 2 M$, $t_{1/2} = 1 h$
So, $k_{0} = 1$ and
 $k_{0} = \frac{\Delta x}{t} \text{ or } t = \frac{0.50 - 0.25}{1} = 0.25 h$
(c)
 $A + B \rightarrow C + D$
Rate $(r) = k[A]^{a}[B]^{b}$...(i)
 $2r = k[2A]^{a}[B]^{b}$...(ii)
 $3r = k[A]^{a}[9B]^{b}$...(ii)
Dividing eq.(ii) by eq.(i)
 $2 = 2^{a}$ or $a = 1$
Dividing eq.(iii) by eq.(i)

Dividing eq (iii)by eq.(i)

$$3 = 9^{b} \text{ or } 3 = 3^{2b} \text{ or } 2b = 1 \text{ or } b = 1/2$$

So order of reaction $= 1 + \frac{1}{2} = \frac{3}{2}$

5

(a)

$$N = \frac{N_0}{2^n}$$

$$n = \frac{T}{t_{1/2}} = \frac{40}{20} = 2$$
∴ $N = \frac{N_0}{2^2} = \frac{N_0}{4}$

6

(a) $p_1 = 80 \text{ kPa}$, $(t_{1/2})_1 = 350s$ $p_1 = 40 \text{ kPa}$, $(t_{1/2})_1 = 175s$ $\frac{80}{40} = \frac{350}{175} = 2$

$$t_{1/2}$$
 Zero order reaction

$$\therefore \frac{p_1}{p_2} = \frac{(t_{1/2})_1}{(t_{1/2})_2} = \frac{a_1}{a_2}$$

$$(t_{1/2}) \propto a(\text{zero order reaction})$$

Concentration -

8

(b)

Thermal decomposition, $CH_3CHO \xrightarrow{\Delta} CH_4 + CO$ $\frac{dx}{dt} = k [\text{CH}_3\text{CHO}]^{3/2}$ **(b)** For the reaction : $A \rightarrow 2B + C$ $p_1 = 0$ After 10 min $p_1 - p 2p$

After long time $0 \qquad 2p_1 \quad p_1$

0

р

Total pressure $= (p_1 - p + 2p + p) = 176 \text{ mm}$

Total pressure after long time

 $= 2p_1 + p_1 = 270 \text{ mm}$

Calculate the value of p from above two equation and then the difference of p_1 and p will be the pressure of *A*

9

(c)

Where,

 E_a = activation energy of forward reaction

 E_a'' =activation energy of backward reaction

The above energy profile diagram shows that

$$E_a > E''_a$$

(d)

(a)

(d)

(b)

The potential energy of the product is greater than that of the reactant, so the reaction is endothermic.

$$E_a = E''_a + \Delta E$$

$$E_t = E_a \text{ or } E_t > E''_a$$

10

Combination of H_2 and B_{r2} to give HBr is zero order reaction as the rate of reaction is not affected by the concentration of reactants.

$$H_2 + B_{r2} \xrightarrow{hv} 2 HBr$$

Rate of reaction $= \frac{1}{4} \frac{d(NO_2)}{dt} = \frac{5.2 \times 10^{-3}}{4 \times 100}$ = $1.3 \times 10^{-5} Ms^{-1}$

$$\Theta = \left(\frac{3.24 \times 10^{-2}}{1.2 \times 10^{-3}}\right)^n$$
$$\Theta = (3^3)^{2/3}$$

order of the reaction is = 2/3

13

For zero order reaction

$$k = \frac{a}{2t_{1/2}} = \frac{a}{2 \times 100} = \frac{a}{200}$$

When 80% completion take place

$$k = \frac{x}{t}$$
$$\frac{a}{200} = \frac{0.80a}{t}$$

 $t = 200 \times 0.8 = 160 \text{ min}$

(a)

2A + B→product [B] is doubled, half-life didn't change Half-life is independent of change in concentration of reactant i.e., first order First order w.r.t. to B When [A] is doubled, rate increased by two times ⇒ First order w.r.t.A Hence, net order of reaction =1+1=2 Unit for the rate constant=conc.⁽¹⁻ⁿ⁾t⁻¹ = $(mol^{-1})^{-1}.s^{-1}$ L. $mol^{-1}s^{-1}$

16

(c) $H_2O + O \rightarrow 2OH; \Delta H = 72kJ \text{ at } 500 \text{ K};$ Given $E_a = 77 \text{ kJmol}^{-1}$ $2OH \rightarrow H_2O + O; E_{a_{B,R}}$ For a reaction $E_{a_{F,R}} = \Delta H + E_{a_{B,R}}$ $\therefore 77 = 22 + E_{a_{B,R}}$ $\therefore E_{a_{B,R}} = 5kJ \text{ mol}^{-1}$

17

(d)

(d)

(c)

According to Arrhenius equation, the relationship between the activation energy and temperature is

$$k = Ae^{-E_a/RT}$$
$$\log k = \frac{-E_a}{2.303 RT} + \log A$$

 \therefore Activation energy decreases with rise in temperature, thereby increasing the rate of the reaction.

18

rate =
$$K[A]^1$$

 $K = \frac{2.0 \times 10^{-5}}{0.01} = 2.0 \times 10^{-3} \text{s}^{-1}$
 $\therefore \quad t_{1/2} = \frac{0.693}{2 \times 10^{-3}} = 347 \text{s}$

19

For a zero order reaction, the plot of concentration of reactant vs time is a straight line (linear) with a negative slope and non-zero intercept.

PE

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	С	С	С	Α	Α	В	В	С	D
Q .	11	12	13	14	15	16	17	18	19	20
A.	Α	D	B	Α	В	С	D	D	C	В