Class: XIIth
Date :

Topic :- Chemical Kinetics

1
(c)
$K_{1}=10^{16} e^{-2000 / T} ; K_{2}=10^{15} e^{-1000 / T}$
if $\quad K_{1}=K_{2}$ then $10^{16} e^{-2000 / T}=10^{15} e^{-1000 / T}$
or $\quad \log 10-\frac{2000}{T}=-\frac{1000}{T}$ or $T=\frac{1000}{2.303} \mathrm{~K}$
2
(c)

As we know that, rate of reaction is directly proportional to concentration of reactant and inversely proportional to the volume of vessel.
i.e.,concentration $\alpha \propto \frac{n}{v}$

For a given reaction,
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
Rate of reaction $=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.$
If volume of vessel is reduced by $\frac{1}{3} r d$ of its initial value, then concentration of compound is increase by 3 times. Hence, the rate of reaction will be increased by 27 times.
(c)

For a zero order reaction
$k_{0}=\frac{\left[A_{0}\right]}{2 t_{1 / 2}}$
Since, $[A]_{0}=2 \mathrm{M}, t_{1 / 2}=1 \mathrm{~h}$
So, $k_{0}=1$ and
$k_{0}=\frac{\Delta x}{t}$ or $t=\frac{0.50-0.25}{1}=0.25 \mathrm{~h}$
4
(c)
$A+B \rightarrow C+D$
Rate $(r)=k[A]^{a}[B]^{b}$
$2 r=k[2 A]^{a}[B]^{b}$
$3 r=k[A]^{a}[9 B]^{b}$
Dividing eq.(ii) by eq.(i)
$2=2^{a}$ or $\mathrm{a}=1$
Dividing eq (iii)by eq.(i)
$3=9^{b}$ or $3=3^{2 b}$ or $2 b=1$ or $b=1 / 2$
So order of reaction $=1+\frac{1}{2}=\frac{3}{2}$
(a)

$$
\begin{aligned}
& N=\frac{N_{0}}{2^{n}} \\
& n=\frac{T}{t_{1 / 2}}=\frac{40}{20}=2 \\
\therefore \quad & N=\frac{N_{0}}{2^{2}}=\frac{N_{0}}{4}
\end{aligned}
$$

(a)
$p_{1}=80 \mathrm{kPa},\left(\mathrm{t}_{1 / 2}\right)_{1}=350 \mathrm{~s}$
$p_{1}=40 \mathrm{kPa},\left(\mathrm{t}_{1 / 2}\right)_{1}=175 \mathrm{~s}$
$\frac{80}{40}=\frac{350}{175}=2$

$\because \frac{p_{1}}{p_{2}}=\frac{\left(\mathrm{t}_{1 / 2}\right)_{1}}{\left(\mathrm{t}_{1 / 2}\right)_{2}}=\frac{a_{1}}{a_{2}}$
$\left(\mathrm{t}_{1 / 2}\right) \propto a($ zero order reaction)
(b)

Thermal decomposition,
$\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\Delta} \mathrm{CH}_{4}+\mathrm{CO}$
$\frac{d x}{d t}=k\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}$
(b)

For the reaction : $A \rightarrow 2 B+C$

After $10 \mathrm{~min} \quad p_{1}-p \quad 2 p \quad p$
After long time $\quad 0 \quad 2 p_{1} \quad p_{1}$
Total pressure $=\left(p_{1}-p+2 p+p\right)=176 \mathrm{~mm}$
Total pressure after long time
$=2 p_{1}+p_{1}=270 \mathrm{~mm}$
Calculate the value of p from above two equation and then the difference of p_{1} and p will be the pressure of A
(c)

Where,
$E_{a}=$ activation energy of forward reaction
$E_{a}^{\prime \prime}=$ activation energy of backward reaction
The above energy profile diagram shows that
$E_{a}>E_{a}^{\prime \prime}$
The potential energy of the product is greater than that of the reactant, so the reaction is endothermic.
$E_{a}=E_{a}^{\prime \prime}+\Delta E$
$E_{t}=E_{a}$ or $E_{t}>E_{a}^{\prime \prime}$
(d)

Combination of H_{2} and $B_{r 2}$ to give HBr is zero order reaction as the rate of reaction is not affected by the concentration of reactants.
$\mathrm{H}_{2}+\mathrm{B}_{\mathrm{r} 2} \xrightarrow{h v} 2 \mathrm{HBr}$
(a)

Rate of reaction $=\frac{1}{4} \frac{d\left(\mathrm{NO}_{2}\right)}{d t}=\frac{5.2 \times 10^{-3}}{4 \times 100}$
$=1.3 \times 10^{-5} \mathrm{Ms}^{-1}$
(d)
$9=\left(\frac{3.24 \times 10^{-2}}{1.2 \times 10^{-3}}\right)^{n}$
$9=\left(3^{3}\right)^{2 / 3}$
order of the reaction is $=2 / 3$
(b)

For zero order reaction
$k=\frac{a}{2 t_{1 / 2}}=\frac{a}{2 \times 100}=\frac{a}{200}$
When 80% completion take place
$k=\frac{x}{t}$
$\frac{a}{200}=\frac{0.80 a}{t}$
$t=200 \times 0.8=160 \mathrm{~min}$
(a)
$2 A+B \rightarrow$ product
[B] is doubled, half-life didn't change
Half-life is independent of change in concentration of reactant i.e., first order
First order w.r.t. to B
When [A] is doubled, rate increased by two times
\Rightarrow First order w.r.t.A
Hence, net order of reaction $=1+1=2$
Unit for the rate constant=conc. ${ }^{(1-n)} t^{-1}$
$=\left(\mathrm{mol}^{-1}\right)^{-1} \cdot \mathrm{~s}^{-1}$
L. $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$
(c)
$\mathrm{H}_{2} \mathrm{O}+\mathrm{O} \rightarrow 2 \mathrm{OH} ; \Delta H=72 \mathrm{~kJ}$ at 500 K ;
Given $E_{a}=77 \mathrm{kJmol}^{-1}$
$2 \mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+0 ; E_{a_{B . R}}$
For a reaction $E_{a_{F, R}}=\Delta H+E_{a_{B, R}}$
$\therefore 77=22+E_{a_{B, R}}$
$\therefore E_{a_{B, R}}=5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d)

According to Arrhenius equation, the relationship between the activation energy and temperature is
$k=A e^{-E_{a} / R T}$
$\log k=\frac{-E_{a}}{2.303 R T}+\log A$
\therefore Activation energy decreases with rise in temperature, thereby increasing the rate of the reaction.
(d)
rate $=K[A]^{1}$

$$
\begin{aligned}
& K=\frac{2.0 \times 10^{-5}}{0.01}=2.0 \times 10^{-3} \mathrm{~s}^{-1} \\
\therefore & t_{1 / 2}=\frac{0.693}{2 \times 10^{-3}}=347 \mathrm{~s}
\end{aligned}
$$

(c)

For a zero order reaction, the plot of concentration of reactant vs time is a straight line (linear) with a negative slope and non-zero intercept.

20
(b)
$r=K[A]^{m}[B]^{n}$;
Also, $\frac{r}{4}=K[A]^{m}[2 B]^{n}$

$$
4=\left(\frac{1}{2}\right)^{n} \text { or } 2^{2}=2^{-n}
$$

$$
\therefore \quad n=-2
$$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| A. | \mathbf{C} | \mathbf{C} | \mathbf{C} | \mathbf{C} | \mathbf{A} | \mathbf{A} | \mathbf{B} | \mathbf{B} | \mathbf{C} | \mathbf{D} |
| | | | | | | | | | | |
| Q. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| A. | A | D | B | A | B | C | D | D | C | B |
| | | | | | | | | | | |

