

$$= 18 \times k[A]^2[B]$$
$$= 18R_1$$

7

(c) For the reaction, $A+B \rightarrow C$ $Rate = k[A]_{0}^{x}[B]_{0}^{y}$ $\frac{Rate_{2}}{Rate_{3}} = \frac{k(0.024)^{x}(0.070)^{y}}{k(0.024)^{x}(0.035)^{y}} = \frac{0.80}{0.10}$ (2)^y = 8 y = 3 $\frac{Rate_{3}}{Rate_{1}} = \frac{k(0.024)^{x}(0.035)^{y}}{k(0.012)^{x}(0.035)^{y}} = \frac{0.10}{0.10}$ (2)^x = 1 x = 0 $Rate = k[B]^{3}$, where, k=rate constant

8

(c)

For second order reaction, $\frac{dx}{dt}$ (rate) $\propto [A]^2$

• Rate Of reaction incr<mark>eases four times</mark> when concentration of reaction is increased two times.

∴ It is second order re<mark>actio</mark>n.

9

(b)

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

 $\frac{d[H_2]}{dt} = -0.3 \times 10^{-4} m s^{-1}$
 $rate = -\frac{1}{3} \frac{d[H_2]}{dt} = +\frac{1}{2} \frac{d[NH_3]}{dt}$
 $= \frac{d[NH_3]}{dt} = -\frac{2}{3} \frac{d[H_2]}{dt}$
 $= -\frac{2}{3} \times (-0.3 \times 10^{-4})$
 $= 0.2 \times 10^{-4}$

10

(d)

According to collision theory,

1. The reaction rate depends on collision frequency and effective collisions. For a molecule to have effective collision it should fulfill two conditions; proper orientation and sufficient energy.

2. The collision rate *i.e.*, the number of collisions taking place in unit volume is also termed as collision frequency (*Z*) and is given by

$$z = \frac{\pi n^2 \sigma^2 u_{ai}}{\sqrt{2}}$$

3. Greater the temperature, greater will be the collision rate.

11 **(d)**

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + 22$ kcal.

 \therefore The activation energy for the forward reaction = 50 kcal

 \therefore The activation energy for the backward reaction=50+22=72 kcal.

12 **(d)**

Only those collisions are effective collisions which are energetic enough and cross over the threshold energy level.

13

(b)
$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{480} \text{ s}^{-1}$$

 $k = 1.44 \times 10^{-3} \, \mathrm{s}^{-1}$

14 **(b)**

It is a characteristic of zero order reaction.

Follow review of order of reaction.

16

(a)

(d)

(a)

Average life is defined as, "reciprocal of decay constant." If decay constant for a reaction is λ then,

Average life=
$$\frac{1}{\lambda}$$

[variation in the concentration V_s time plot for a zero order reaction]

18

Energy of activation does not depend on the stoichiometry of change. It is characteristic value for a chemical reaction.

Use ; $r = K[A]^m[B]^n$

20 (a)

Slow reaction rate indicates higher free energy of activation

ANSWER-KEY										
Q .	1	2	3	4	5	6	7	8	9	10
A.	A	Α	С	Α	С	В	С	С	В	D
Q .	11	12	13	14	15	16	17	18	19	20
A.	D	D	В	В	A	A	D	Α	D	А