

Class : XIth Date :

Solutions

Subject : CHEMISTRY DPP No. : 8

Topic :- Chemical Bonding and Molecular Structure

1	(b)								
	<i>e</i> .g., BF ₃ .								
2	(d)								
	Bond order for $H_2^- = +1/2$								
3	(b)								
	<i>sp</i> -hybridization leads to bond angle of 180°.								
4	(c) $(\mathbf{r}) = 0$								
-	$\mu H_2 O \neq 0, \ \mu_{CO_2} = 0$								
5									
	No, of hybrid orbital $=\frac{1}{2}[No.of e^{-1} in V-shell of atom + No.of monovalent atoms -charge$								
	on cation +charge on a <mark>nion]</mark>								
	No. of hybrid orbital 2 3 4 5 6 7								
	Type of hybridisation sp sp^2 sp^3 sp^3d sp^3d^2 sp^3d^3								
	Hybridisation in TeCl ₄ :								
	No. of hybrid orbital $=\frac{1}{2}[6 + 4 + 0 + 0] = 5$								
	Hence, TeCl ₄ shows sp^3d hybridisation.								
6	(a)								
	The stability and bond angle order for hybrids in a group is $NH_3 > PH_3 > AsH_3 > SbH_3 >$								
	BiH ₃ .								
7	(c)								
	Isoelectronic species are those species which have equal number of electrons. Hence, CO_2								
	is isoelectronic with N_2O .								
	Number of electron in $CO_2 = 22$								
	Number of electron in $N_2O = 22$								
8	(d)								
	In BeCl ₂ , Be atom has incomplete octet.								
9	(a)								
	Greater the charge, smaller the radius, greater the polarising power and thus greater the								
	covalent nature. This leads to increase in lattice energy.								
10	(c)								
	The structure, $CH_2 = C = CH_2$ is non-planar with two $-CH_2$ groups being in planes								

perpendicular to each other.

(d)						
Electronegativity increases along the period and decreases down the group.						
(a)						
Brass in an alloy.						
(c)						
It is head on overlapping and thus, forms more stronger bond.						
(c)						
H-bonding in molecule gives rise to increase in its b.p.						
(b)						
One bonding molecular orbital and one antibonding.						
(a)						
Follow Fajans' rule.						
(b)						
Removal of two electrons (one by one) from an atom requires energy $= IP_1 + IP_2$.						
(c)						
The molecular orbital electronic configuration.						
$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_x)^2$						
$(\pi 2 p_{\nu})^{2} (\pi 2 p_{z})^{2} (\pi 2 p_{z})^{2} (\pi 2 p_{z})^{2} (\pi 2 p_{z})^{1}$						
Total electrons $=17$						
Hence, this configuration belongs to 0^{-}_{2} (17 e^{-}) ion.						
(a)						
$H_3O^+:sp^3:NO_3^-:sp^2$						

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	В	D	V	С	В	Α	С	D	A	С		
Q .	11	12	13	14	15	16	17	18	19	20		
A.	С	D	Α	С	С	В	Α	В	C	A		