

Class: XIth Date:

Solutions

Subject: CHEMISTRY

DPP No.: 7

Topic :- Chemical Bonding and Molecular Structure

- 1 **(a)**
 - 6, 6
- 2 **(a)**

More is the dipole moment more is ionic nature. $\mu = \delta \times d$; higher is μ , more will be δ on the atom.

3 **(c)**

Due to sp^3 -hybridization.

5 **(a)**

Each species has 14 electrons and bond order for each is three.

6 **(a**)

Among the given choices of compound having oxygen attached to hydrogen will have maximum hydrogen bonding.

- \therefore Among CH₃OCH₃, (CH₃)₂C = 0, CH₃CHO and C₂H₅OH only C₂H₅OH has oxygen attached to hydrogen atom.
- ∴ C₂H₅OH shows maximum hydrogen bonding.
- 7 **(c)**

It is experimental value.

8 **(c)**

 $\ensuremath{O^{2+}_2}$ has 14 electrons. Its electronic configuration is as

 $0_2^+: \sigma 1s^2\,{}^*_\sigma 1s^2$, $\sigma 2s^2\,{}^*_\sigma 2s^2$, $\pi 2p_y^2\,\pi 2p_z^2\sigma 2p_x^2$

Bond order $=\frac{N_{b-}N_a}{2}=\frac{10-4}{2}=3$

9 **(c**)

In diamagnetic molecule, all the electrons are paired $% \left(1\right) =\left(1\right) \left(1\right)$

10 **(a)**

Hence, enolic form of acetone contains 9 sigma bonds, 1 pi bond and two lone pairs.

11

In NO $_3^-$ ion, total number of electrons = 7+24+1=32 and in it central atom is sp^2 hybrid.

No. of hybrid orbitals =
$$\frac{V-8B}{2} + B = \frac{24-8\times3}{2} + 3$$

 $(V \rightarrow \text{total number of electrons in valence shell})$

 $B \rightarrow$ probability of formation of bond)

In CO_3^{2-} ion, total number of electrons = 6+24+2=32 and in it central atom is sp^2 hybrid.

No. of hybrid orbital =
$$\frac{24 - 8 \times 3}{2} + 3 = 3$$

Hence, NO_3^- and CO_3^{2-} ions are isoelectronic and isostructural.

12

 $H_2^+ = \sigma 1s^2$ (According to molecular orbital theory)

Bond order =
$$\frac{\text{bonding electrons} - \text{antibonding electrons}}{2}$$
$$= \frac{1}{2} = 0.5$$

H₂⁺ is paramagnetic due to the presence of one unpaired electron.

13

H-bonding in molecules gives rise to increase in b.p.

14

Bond distance is in the order:

$$C - C > C = C > C \equiv C$$

 $sp^3 > sp^2 > sp$

15

% ionic character =
$$16(x_A - x_B) + 3.5(x_A - x_B)^2$$

= $16 \times 2 + 3.5 \times (2^2)$
= 46

 \therefore The % covalent character = 100 - 46 = 54

16

 ICl_{2}^{-} has $sp^{3}d$ -hybridized state (i.e., trigonal bipyramidal shape but distorted due to the presence of lone pair of electron on I atom.)

17

Like gets dissolved in like.

18 **(c)**

 N_2O is isoelectronic with CO_2 and N_3^- .

Hence, its structure is linear.

$$N - N - 0$$

19 **(d)**

H atom attached on N, O, F develops hydrogen bonding molecule.

20 **(d**)

In CCl_4 all bonds of carbon being identical, the molecule is a regular tetrahedron

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	A	С	C	A	A	C	С	С	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	В	В	A	A	D	A	C	D	D

