Class : XIth

Topic :- Chemical Bonding and Molecular Structure

1
(a)

6, 6
(a)

More is the dipole moment more is ionic nature. $\mu=\delta \times \mathrm{d}$; higher is μ, more will be δ on the atom.
(c)

Due to $s p^{3}$-hybridization.

(a)

Among the given choices of compound having oxygen attached to hydrogen will have maximum hydrogen bonding.
\because Among $\mathrm{CH}_{3} \mathrm{OCH}_{3},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}, \mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ only $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ has oxygen attached
to hydrogen atom.
$\therefore \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ shows maximum hydrogen bonding.
(c)

It is experimental value.
(c)
O_{2}^{2+} has 14 electrons. Its electronic configuration is as
$\mathrm{O}_{2}^{+}: \sigma 1 s^{2}{ }_{\sigma}^{*} 1 s^{2}, \sigma 2 s^{2}{ }_{\sigma}^{*} 2 s^{2}, \pi 2 p_{y}^{2} \pi 2 p_{z}^{2} \sigma 2 p_{x}^{2}$
Bond order $=\frac{N_{b-}-N_{a}}{2}=\frac{10-4}{2}=3$
(c)

In diamagnetic molecule, all the electrons are paired
10
(a)

Each species has 14 electrons and bond order for each is three.
(a)

Hence, enolic form of acetone contains 9 sigma bonds, 1 pi bond and two lone pairs.
(a)

In NO_{3}^{-}ion, total number of electrons $=7+24+1=32$ and in it central atom is $s p^{2}$ hybrid.
No. of hybrid orbitals $=\frac{V-8 B}{2}+B=\frac{24-8 \times 3}{2}+3$
($V \rightarrow$ total number of electrons in valence shell
$B \rightarrow$ probability of formation of bond)
In CO_{3}^{2-} ion, total number of electrons $=6+24+2=32$ and in it central atom is $s p^{2}$ hybrid.
No. of hybrid orbital $=\frac{24-8 \times 3}{2}+3=3$
Hence, NO_{3}^{-}and CO_{3}^{2-} ions are isoelectronic and isostructural.
(b)
$\mathrm{H}_{2}^{+}=\sigma 1 s^{2}$ (According to molecular orbital theory)
Bond order $=\frac{\text { bonding electrons }- \text { antibonding electrons }}{2}$

$$
=\frac{1}{2}=0.5
$$

H_{2}^{+}is paramagnetic due to the presence of one unpaired electron.
(b)

H -bonding in molecules gives rise to increase in b.p.
(a)

Bond distance is in the order:
$\mathrm{C}-\mathrm{C}>C=C>C \equiv C$

$$
s p^{3}>s p^{2}>s p
$$

(a)
$\%$ ionic character $=16\left(x_{A}-x_{B}\right)+3.5\left(x_{A}-x_{B}\right)^{2}$
$=16 \times 2+3.5 \times\left(2^{2}\right)$
$=46$
\therefore The \% covalent character $=100-46=54$
(d)
ICl_{2}^{-}has $s p^{3} d$-hybridized state (i.e., trigonal bipyramidal shape but distorted due to the presence of lone pair of electron on I atom.)
(a)

Like gets dissolved in like.
(c) $\mathrm{N}_{2} \mathrm{O}$ is isoelectronic with CO_{2} and N_{3}.
Hence, its structure is linear.

$$
N-N-O
$$

(d)
(d)

H atom attached on $\mathrm{N}, \mathrm{O}, \mathrm{F}$ develops hydrogen bonding molecule.
In CCl_{4} all bonds of carbon being identical, the molecule is a regular tetrahedron

| ANSWER-KEY | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| A. | \mathbf{A} | \mathbf{A} | \mathbf{C} | \mathbf{C} | \mathbf{A} | \mathbf{A} | \mathbf{C} | \mathbf{C} | \mathbf{C} | \mathbf{A} |
| | | | | | | | | | | |
| Q. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| A. | \mathbf{A} | \mathbf{B} | \mathbf{B} | A | A | D | A | \mathbf{C} | \mathbf{D} | \mathbf{D} |
| | | | | | | | | | | |

