Class : XIth
Solutions

## Topic :- Chemical Bonding and Molecular Structure

(c)

In $\mathrm{O}^{2-}$ effective nuclear charge is minimum due to more number of electrons and thus the size of $\mathrm{O}^{2-}$ is maximum.
(b)

The zero dipole moment of $\mathrm{BF}_{3}$ molecule is due to its symmetrical (triangular planar) structure.
(b)

Bond dissociation energy order:
$\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$
$\begin{array}{llll}242.6 & 192.8 & 158.8 & 151.1 \\ \text { in kJ mol }\end{array}$
(b)
$\mathrm{CH}_{3} \mathrm{OH}$ shows H -bonding in liquid state.
(b)

They have high electron density.
(c)

A coordinate bond is a dative covalent bond in which two atoms form bond and one of them provides both electrons.

$$
X:+Y \rightarrow X: Y \text { or } X \rightarrow Y
$$

(b)

C -C bond length in $s p^{2}$ hybrid molecule is $=1.39 \AA$
(d)

More is electronegativity differences, more is ionic character.
(a)

Cation are always smaller than their parent atoms:
$\mathrm{Al}^{3+}<\mathrm{Al}^{2+}<\mathrm{Al}^{+}<\mathrm{Al}$.
(a)

We know that the $\mathrm{C}-\mathrm{C}$ bond length $=1.54 \mathrm{~A}, \mathrm{C}=\mathrm{C}$ bond length $=1.34 \mathrm{~A}$ and $\mathrm{C} \equiv \mathrm{C}$ bond length $=1.20 \mathrm{~A}$. Since propyne has triple bond; therefore, it has minimum bond length.
(c) Ionic compounds conduct current in molten state.
(d)

Metals are good conductor of electricity because they contain free electrons.
(d)
$\mathrm{OSF}_{2}$ has pyramidal shape

(d)

Non-polar species exert van der Waals' forces among themselves.
(b)

It has $3 \sigma$-and $1 \pi$-bond.
(c)
$\mathrm{Cl}^{-}$has $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}$ configuration.
(c)

Per cent ionic character is given by \% of ionic character.
$=16\left(X_{A}-X_{B}\right)+3.5\left(X_{A}-X_{B}\right)^{2}$
From the above relation, it is clear that as soon as $\left(X_{A}-X_{B}\right)$ increases, \% ionic character will also increase.
Therefore, curve $C$ shows a correct path.
(d)
$7 \mathrm{Cl}=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p_{x}^{2}, 3 p_{y}^{2}, 3 p_{z}^{1}$
$\mathrm{Cl}=1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{1}, 3 p_{x}^{1}, 3 p_{y}^{1}, 3 p_{z}^{1}, 3 d^{1}, 3 d^{1} 3 d^{1}$
(3rd excited state)
Chlorine atom, in its third excited state, reacts with fluorine to form $\mathrm{ClF}_{7}$. Its shape is pentagonal bipyramidal.
(c)

Anion $\left(\mathrm{O}^{-}\right)$repels the test electron because of same charge.

| ANSWER-KEY |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| A. | $\mathbf{C}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{B}$ | $\mathbf{B}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{B}$ | $\mathbf{D}$ | $\mathbf{A}$ |
|  |  |  |  |  |  |  |  |  |  |  |
| Q. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| A. | A | C | D | D | D | B | C | C | D | C |
|  |  |  |  |  |  |  |  |  |  |  |

