

Class : XIth Date :

Solutions

Subject : CHEMISTRY DPP No. : 5

Topic :- Chemical Bonding and Molecular Structure

1

(c) Cl in ClF₃ has sp^3d -hybridization

and possesses two axial Cl—F bonds and one equatorial bond. Two lone pairs are at equatorial position give rise to bent 'T' shape to ClF_3 .

3

 O_2^- has one unpaired electron in its antibonding molecular orbital.

4 **(d)**

(c)

(c)

(d)

 $PCl_3 < PBr_3 < PI_3$, the **bond** angle order is explained in terms of increasing electronegativity of halogens, whereas, $PF_3 > PCl_3$, bond angle order is explained in terms of $p\pi$ - $d\pi$ bonding in PF_3 .

5

$$\label{eq:momental} \begin{split} \mu \mbox{ experimental} &= \mbox{Dipole moment } \times 10^{-18} \\ \mu \mbox{ theoretical} &= \mbox{Bond length} \times 4.8 \times 10^{-10} \mbox{ esu} \times \mbox{cm} \end{split}$$

Percentage ionic character = $\frac{\mu_{experimental}}{\mu_{theoretical}} \times 100$

$$= \frac{1.0 \times 10^{-18} \times 100}{1.25 \times 4.8 \times 10^{-10} \times 10^{-8}}$$
$$= 16.66\%$$

6

CCl₄ does not exhibit dipole moment due to its symmetrical structure.

Cl

(a)

7

 $N_{\rm 2}$ molecule has 14 electrons. The molecular orbital electronic configuration of the molecule is as

$$N_{2}:KK (\sigma 2s)^{2} ({}^{*}_{\sigma} 2s)^{2} (\pi 2p_{x})^{2}$$

= $(\pi 2p_{y})^{2} (\pi 2p_{z})^{2}$

 $N_{\overline{2}}$ ion is formed when N_2 accept an electron hence it has15 electrons. The molecular orbital electronic configuration of the molecule is as

 $N_{2}^{-}:KK (\sigma 2s)^{2} (\frac{s}{\sigma} 2s)^{2} (\pi 2p_{x})^{2} (\pi 2p_{y})^{2}$

 $(\sigma 2p_z)^2 ({}^*_{\pi} 2p_x)^1$

Hence, this electron goes to antibonding π molecular orbital.

8 **(b)** The

The size of isoelectronic decreases with increase in atomic number.

9 (a)

The bond orders for H_2 , H_2^+ , H_2 and H_2^+ are 1.0, 0.5, 0.0 and 0.5 respectively.

10 **(b)**

N atom has smallest radius.

11 **(d)**

The order of screening effect for a given shell electrons is s > p > d > f.

12 **(a)**

The stability of hydrides decreases down the gp, *i.e.*, from NH₃ to BiH₃ which can be observed from their bond dissociation enthalpy. The correct order is

 $\mathrm{NH}_3 < P\mathrm{H}_3 < \frac{As\mathrm{H}_3}{Sb\mathrm{H}_3} < Sb\mathrm{H}_3 < Bi\mathrm{H}_3$

Property	NH_3	PH_3	AsH ₃	SbH ₃	BiH ₃
$\Delta_{\rm diss} H^-(E-H)/{\rm kJ}~{\rm mol}^{-1}$	389	322	297	255	_
(a)					

13

 SF_4 has sp^3d^2 -hybridization and see-saw geometry.

14 **(a)**

Due to presence of intermolecular hydrogen bonding in H_2O , its molecules are associated with each other which results unusual high boiling point of water.

15 **(c)**

Larger is anion, more is covalent character.

16 **(a)**

Molecular orbital configuration of,

 $O_2^{2-} = \sigma 1s^2$, $\sigma^* 1s^2$, $\sigma 2s^2$, $\sigma^* 2s^2$, $\sigma 2p^2$, $\pi 2p_x^2$, $\pi 2p_y^2$, $\pi^* 2p_z^2$, $\pi^* 2p_y^2$

17 **(a)**

Valencies of *X*, *Y* and *Z* is +2, +2 and -2 respectively so, they will form a compound having of formula *XYZ*₂.

18 **(a)**

The molecule in which the bond dipoles of all the bonds are cancel out by each other, is called non – polar *e.g.*, CCl₄.

In CCl_4 , there is a large difference between the electronegativities of C and Cl but all the four C – Cl bond dipoles cancel each other , hence it is a non-polar molecule.

(non-polar)

(c)

19

Tetrahedral structure is associated with sp^3 hybridised central atom without any lone pair. The structure of all the compounds given are as follows :

20

(c)

Methyl group has + I effect and $- NO_2$ group has - I effect. Therefore, in *p*-nitro toluene the dipole moments of $-CH_3$ and $-NO_2$ groups act in the same direction. So, the resultant

dipole moment is additive. *i.e.*, 3.93+0.43=4.36 debye

ANSWER-KEY												
Q .	1	2	3	4	5	6	7	8	9	10		
A.	c	a	c	d	c	d	a	b	a	b		
Q .	11	12	13	14	15	16	17	18	19	20		
A.	d	a	a	a	c	a	a	a	c	c		

