

Class: XIth Date:

Solutions

Subject : CHEMISTRY

DPP No.: 4

Topic :- Chemical Bonding and Molecular Structure

1 **(a)**

The tendency to show lower ionic state increases down the group due to inert pair effect.

2 **(b)**

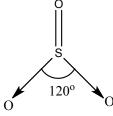
$$\mathsf{CH} \equiv \mathsf{C} - \mathsf{CH}_2 - \mathsf{CH}_3$$

$$sp$$
 sp sp^3 sp^3

In butyne – 1, there is no carbon with sp^2 hybridisation.

3 **(b**)

NO⁺:
$$\sigma 1s^2$$
, $\sigma^x 1s^2$, $\sigma 2s^2$, $\sigma^x 2s^2$, $\sigma^2 p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2\pi_z^2 \end{bmatrix}$:: B.O. = $\frac{10-4}{2}$ = 3


CN⁻:
$$\sigma 1s^2$$
, $\sigma^x 1s^2$, $\sigma 2s^2$, $\sigma^x 2s^2$, $\sigma 2p_x^2 \begin{bmatrix} \pi 2p_y^2 \\ \pi 2p_z^2 \end{bmatrix}$: B.O. $= \frac{10-4}{2} = 3$

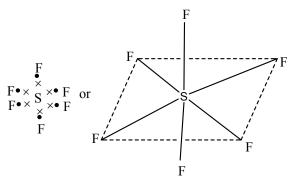
4 **(c)**

Electron affinity order for halogens is Cl > F > Br > I.

5 **(d**

Sulphur trioxide has no S - S linkage. It has triangular planar geometry.

7 **(d**)


All molecules or ions *i.e.*, H_2O , NH_{4}^+ , SO_4^{2-} , ClO_4^- , and NH_3 are involved in sp^3 hybridisation in their formation.

9 **(b)**

p-orbitals always show lateral overlapping.

10 **(a)**

 SF_6 does not obey octet rule as in it S-atom has 12 electrons in its valence shell.

11 **(b)**

The structure of peroxodisulphuric acid $(H_2S_2O_8)$ is

Hence, it contains 11σ and 4π -bonds.

12 **(d)**

Paramagnetic species have unpaired electrons

13 **(c**)

N in it has three σ -bonds and one lone pair of electron.

14 **(a)**

Electron deficient species can accept lone pair of electron and thus, act as Lewis acid.

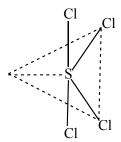
15 **(a**

NH₃ has pyramidal shape and thus, possesses three folds axis of symmetry.

16 **(d)**

 ICl_2^- has sp^3d -hybridization and has two bond pairs and three lone pairs of electrons.

17 **(a)**


The dipole moment of a polar molecule depends upon its geometry. A symmetrical molecule is non-polar even though it contain polar bonds. Methane molecule (CH_4) has zero moment value of dipole moment due to its symmetrical structure.

In $CHCl_3$, the resultant of C-H and C-Cl dipole oppose the resultant of two C-Cl dipoles while in CH_2Cl_2 , the resultant of C-H dipoles adds to resultant of two C-Cl. In case CH_3Cl , the resultant of two C-H dipole adds to the resultant of two C-Cl. In case CH_3Cl the resultant of two C-H dipoles add to the resultant of C-H and C-Cl dipoles.

Thus dipole moment of CH_3Cl is highest among the given compounds. The molecule (CCl_4) again becomes symmetrical and dipole moment reduces to zero.

18 (c

S in SCl_4 is sp^3d -hybridized and possesses see-saw structure whereas $SiCl_4$ is tetrahedral.

19 **(c)**

Oxygen cannot expand its octet due to absence of d-orbitals in its valence shell.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	В	В	С	D	С	D	В	В	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	D	С	A	A	D	A	C	С	С

