

Class : XIth Date :

Solutions

Subject : CHEMISTRY DPP No. : 3

Topic :- Chemical Bonding and Molecular Structure

2	(a)							
	Geometry is explained by taking an account of single bonds only. However, presence of							
	double bond may distort bond angles, <i>e</i> .g., HCHO has sp^2 -hybridization but angle H—C—H							
	is 116° and angle H—C—O is 122° due to double bond. In BF ₃ (<i>sp</i> ² -hybridization) each							
	angle is of 120°.							
3	(d)							
	The shape of carbon dioxide is linear because it has sp hybridisation and bond angle 180° .							
	$\mathbf{O} = \mathbf{C} = \mathbf{O}$							
4	(a)							
	Addition of electrons t <mark>o an a</mark> tom re <mark>sults</mark> an increase in its size.							
5	(d)							
	H ₂ O is V shaped.							
6	(c)							
	In diethyl ether oxygen <mark>und</mark> ergoes <i>sp</i> ³ hybridisation forming four <i>sp</i> ³ hybrid orbitals.							
7	(a)							
	As soon as the electronegativity increases, ionic bond strength increases							
8	(a)							
	Both are linear.							
9	(C)							
	Inspite of three polar bond, the lone pair of electron on N atom decreases the dipole							
	moment of NF_3 than NH_3 .							
10	(C)							
	Polarity in a molecule gives rise to an increase in forces of attractions among molecules							
	and thus, more becomes boiling point.							
12	(a)							
	The melting point of naphthalene is minimum because it is non – polar covalent compound							
10	and has less melting point.							
13								
	BF ₃ is a electron deficient compound. So, it has no lone pair orbital over B atom.							
14								
4 5	Molecular orbital theory was given by Mulliken.							
15	(a)							

The trigonal geometry of BF_3 with three vectors (B \rightarrow F) acting at 120° leads to zero dipole moment. In NH₃ three vectors (N \leftarrow H) act as 107° along with one lone pair giving dipole moment in molecule.

16 **(d)**

Proton (H⁺) can only accept a lone pair from donor atom.

17 **(d)**

Each has 10 electrons

18 **(d)**

Isomerism is arised due to directional nature of covalent bonding.

19 **(b)**

 SF_4 has sp^3d -hybridized sulphur atom.

20 **(c)**

 $SbCl_5^{2-}$ has sp^3d^2 -and rest all has sp^3d -hybridisation.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	d	a	d	a	d	c	a	a	c	c		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	d	a	c	c	d	d	d	d	b	c		

