

Class : XIth Date :

1

2

4

5

6

7

8

9

Solutions

Subject : CHEMISTRY **DPP No. : 2**

Bonding and

(d) Size of anions is larger than their parent atoms. Also more is ENC lesser is size. (d) $_{22}$ Ti : $3s^2$, $4s^2 \xrightarrow{IE_1} 3d^2$. $4s^1$ $_{23}$ V:3 d^3 , $4s^2 \xrightarrow{IE_1} 3d^3$, $4s^1$ $_{24}\text{Cr}: 3d^5, 4s^1 \xrightarrow{IE_1} 3d^5 \xrightarrow{IE_2 \text{ from}} \text{maximum}$ $_{25}$ Mn :3 d^5 , $4s^2 \xrightarrow{IE_1} 3d^5$, $4s^1$ (a) C – Cl bond is more ionic than C – I bond because of the greater difference in electronegativities of C and Cl as compared to that of carbon and iodine. Therefore, C – Cl bond is stronger than C – I bond. (c) Cl is more electronegative than I. **(b)** The solubility of a compound depends upon its hydration enthalpy. If hydration enthalpy exceeds the lattice enthalpy than it is soluble in water. Ag_2SO_4 , hydration enthalpy is lower than lattice enthalpy, so it is insoluble in water. (c) Silicon has the tendency to show covalent bonding because of higher IP values. (c) In SnCl₂, Sn has sp^2 hybridisation and hence, has angular shape (c) The inert gas just after chlorine is argon. 10 (d) The *d*-orbital involved in sp^3d -hybridization is d_{zx} . 11 (d) $O_2 = \sigma 1 s^2 {}^*_{\sigma} 1 s^2 \sigma 2 s^2 {}^*_{\sigma} 2 s^2 \sigma 2 p_z^2 \pi 2 p_x^2 = \pi 2 p_y^2 {}^*_{\pi} 2 p_{x'} = {}^*_{\pi} 2 p_{y'}$ In O_2^+ , one electron is removed from Na

BO for $O_2 = 2$ and for $O_2^+ = 2.5$

For

	Therefore, paramagnetism decreases, BO increases.								
12	(b)								
	Intramolecular H-bonding is present in ortho nitrophenol.								
14	(c)								
	According to valence shell electron pair repulsion (VSEPR) theory, the order of repulsive interactions between various electron is								
	lp - lp > lp - bp > bp - bp								
15	(b)								
	In like atoms, electronegativity difference is zero.								
16	(d)								
	BCl_3 has bond angle equal to 120° (trigonal planar). NH ₃ and H ₂ O have sp^3 hybridisation								
	but due to the presence of lone pair of electrons, they have bond angle less than 109.28'								
	$(NH_3 - 107^\circ, H_2O - 104.5^\circ)$, AsH ₃ (<i>sp</i> ³ hybrid) has smaller bond angle than NH ₃ due to								
	less electronegativity of As than N.								
17	(d)								
	E_{op}° order is Mg > Fe > Cu; more is E_{op}° , more is electropositive character.								
18	(c)								
	O atom possesses two lone pair of electrons.								
19	(a)								
	M.O. configuration of $0\frac{1}{2}$ is:								
	$\sigma 1 s^2 \sigma^* 1 s^2, \sigma^* 2 s^2 \sigma 2 p^2, \pi 2 p_y^2 \pi^* 2 p_x^1$								
	Bond order of $O_2^+ = \frac{1}{2}[6 - 1] = \frac{5}{2}$								
	M.O. configuration of N_2^+ is:								
	$\sigma 1 s^2 \sigma^* 1 s^2$, $\sigma 2 s^2 \sigma^* 2 s^2$, $\pi \frac{2 p_y^2 \pi}{2 p_y^2 \sigma^2 p^1}$								
	Bond order of $N_2^+ = \frac{1}{2}[5-0] = \frac{5}{2}$								
20	(c)								

No scope for addition in completely filled valence orbitals of inert gases.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	D	С	Α	С	В	С	С	С	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	В	Α	С	В	D	D	С	A	С		