

Class : XIth Date :

Solutions

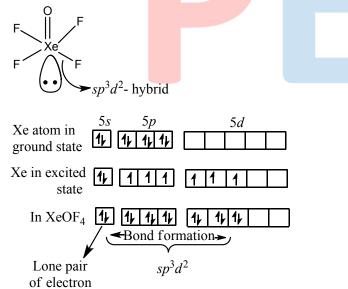
Subject : CHEMISTRY DPP No. : 10

Topic :- Chemical Bonding and Molecular Structure

(b)								
Molecule	Hybridizatio							
	n							
SO ₃	sp^2							
C_2H_2	sp							
C_2H_4	sp^2 sp^3							
CH_4	sp^3							
CO ₂	sp							

2

(b)


(b)

1

 Mg^{2+} is smaller than Na⁺ and thus, smaller is cation more is hydration energy.

3

Number of lone pair in $XeOF_4$ is one (1). The structure of $XeOF_4$ is given as follows :

One π -bond so remaining six electron pairs form an octahedron with one position occupied by a lone pair.

4 **(d)**

These are the factors on which van der Waals' forces depend.

5 **(b)**

It has sp^3d^3 -hybridization with one lone pair on X*e*.

6 **(b)**

Bond order $\propto \frac{1}{\text{Bond length}}$ B0 of NO<B0 of NO $^+$ \therefore Bond length of NO is greater than the bond length of NO⁺. 7 **(b)** Element with atomic number 20 is metal (Ca); it will combine with non-metal. 8 (a) A decrease in *s*-character increases bond length. 10 **(b)** Calculated dipole moment, $\mu_{cal} = 2.0 \times 10^{-10} \mbox{ m} \times 1.6 \times 10^{-19} \mbox{ C}$ $= 3.2 \times 10^{-29} \text{ C} - \text{m}.$ Percentage of ionic character = $\frac{\mu_{exp}}{\mu_{cal}} \times 100$ = $\frac{5.12 \times 10^{-29}}{3.2 \times 10^{-29}} \times 100 = 16\%$ 11 (c) C_2H_4 involves sp^2 -hybridization on carbon atoms. 12 **(b)** According to molecular orbital theory. $F_2(18) = \sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, {}^*_{\sigma} 2s^2, \sigma 2p_z^2, \pi 2p_x^2 \approx \pi 2p_y^2, {}^*_{\pi} 2p_x^2 \approx {}^*_{\pi} 2p_y^2$ Bond order in $F_2 = \frac{N_{b-}N_a}{2} = \frac{10-8}{2} = 1$ 15 (a) Bond formation is always exothermic. Compounds of sodium are ionic. 16 (d) In case of water, five water molecules are attached together through four hydrogen bonding 17 **(b)** Removal of electron is easier in the order of shell 4 > 3 > 2 > 118 (c) Bond order of NO⁺, NO and NO⁻ are 3, 2.5 and 2 respectively. Bond energy \propto bond order. 19 (a) FXF angles of two types are present in sp^3d hybrid orbitals. Since, SF₄ shows sp^3d hybridisation as follows, therefore, it exhibits two different FXF angles. 20 (c) *s*-character \propto bond angle

For 25% *s* character (as in sp^3 hybrid orbital), bond angle is 109.5°, for 33.3% *s* character (as in sp^2 hybrid orbital), bond angle is 120° and for 50% *s* character (as in *sp* hybrid

orbital), bond angle is 180°.

Similarly, when the bond angle decreases below $1.9.5^\circ$, the s- character will decrease accordingly

Decreasing in angle $= 120^{\circ} - 109.5^{\circ} = 10.5^{\circ}$

 \therefore Decrease in *s*-character = 33.3 - 25 = 8.3

Actual decrease in bond angle $= 109.5^{\circ} - 105^{\circ} = 4.5^{\circ}$

∴ Expected decrease in *s*-character

$$=\frac{8.3}{10.5} \times 4.5 = 3.56\%$$

Thus, the *s*-character should decrease by about 3.56%, *ie*, *s*-character

= 25 - 3.56 = 21.44%

	ANSWER-KEY											
Q .	1	2	3	4	5	6	7	8	9	10		
А.	B	В	В	D	В	В	В	Α	B	B		
Q .	11	12	13	14	15	16	17	18	19	20		
А.	С	В	С	Α	Α	D	B	С	Α	С		