

Class : XIth Date :

Solutions

Subject : CHEMISTRY DPP No. : 1

Topic :- Chemical Bonding and Molecular Structure

1	(b)								
	${\sf SeF}_4$ has distorted tetrahedral geometry while, ${\sf CH}_4$ has tetrahedral geometry								
	Speed of electron \neq speed of light								
2	(c)								
	Butadiene is $CH_2 = CH - CH = CH_2$.								
3	(b)								
	37 is atomic number of Rb the electropositive element and 53 is atomic number of iodine								
	(the electronegative el <mark>ement).</mark>								
4	(c)								
	In methane bond angle is 109°28′. <mark>Methane molec</mark> ule is tetrahedral in structure.								
5	(b)								
	Cs is metal and solid.								
6	(d)								
	1. Glycerol has strong hydrogen bonding due to presence of 3 – OH groups in it. It is								
	correct statem <mark>ent.</mark>								
	 Alkyl halides have lower boiling point than alcohols because alcohols have stronger forces of attraction between the hydrogen bonds as compared to weaker van der Waals' forces between molecules of alkyl halide. 								
	\therefore Statement (d) is false.								
7	(a)								
	Ionic radii $= \frac{n^2 a_0}{Z_{\text{eff}}}$								
8	(c)								
	Only those atomic orbitals combine, that have nearly equal energy								
9	(b)								
	The stability of the ionic bond depends upon the lattice energy which is expected to be								
10	more between Mg and F due to $+2$ charge on Mg atom								
10	(a) Smaller is an ion lesser is its polarization								
11									
11	ູເບງ								

 $B_{(G.S.)} \underbrace{ \stackrel{2s}{\clubsuit} } \underbrace{ \stackrel{2p}{[1]} }$ B_(E.S.) sp^2 - hybridisation Boron has planar structure due to sp^2 hybridisation. (C) 3. NO⁻(16). According to MOT. $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $\begin{cases} \frac{\pi p_y^2}{\pi 2 p_x^2}, \\ \frac{\pi p_y^2}{\pi 2 p_x^2}, \\ \frac{\pi p_y^2}{\pi 2 p_y^2}, \end{cases}$ Bond order = $\frac{\text{bonding electrons} - \text{antibonding electrons}}{2}$ $=\frac{10-6}{2}=2$ $N0^{+}(14)$ 4. $\sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, {}^*_{\sigma} 2s^2, \sigma 2p_x^2 \begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2 \end{cases}$ Bond order = $=\frac{10-4}{2}=3$ 5. NO(15) $\sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, \sigma 2s^2, \sigma 2s^2, \sigma 2p_x^2, \begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2, \\ \pi^2 p_y^2 \\ \pi^2 p_y^2 \end{cases}$ Bond order = $=\frac{10-5}{2}=2.5$ (iv)NO²⁺(13). $\sigma 1s^2, {}^*_{\sigma} 1s^2, \sigma 2s^2, \sigma 2s^2, \sigma 2p_x^2, \begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2 \end{cases}$ Bond order = $=\frac{9-4}{2}=2.5$ $N0^{2-}(17)$ 6. $\sigma 1s^2$, ${}^*_{\sigma} 1s^2$, $\sigma 2s^2$, ${}^*_{\sigma} 2s^2$, $\sigma 2p_x^2$, $\begin{cases} \pi^{2} p_y^2 \\ \pi^{2} p_z^2 , \\ \pi^{2} p_x^2 \\ \pi^{2} p_x^2 \\ \pi^{2} p_x^2 \end{cases}$ Bond order = $=\frac{10-7}{2}=1.5$ The order of bond order is $NO^{2-} < NO^{-} < NO^{2+} \approx NO < NO^{+}$ (d) Cl is more electronegative than Br. (C) Boron in $[BF_4]^-$ has regular tetrahedral geometry because of sp^3 -hybridization on boron atom. (d)

12

13

14

15

Usually symmetrical molecules have less dipole moment in comparison to unsymmetrical molecules.

Hence, **(a)**

(d)

(d)

(b)

 NO_2 (*m*-nitroaniline) has the highest dipole moment among the given.

16

Thus, excitation of 2*s*-electron in N is not possible.

17 **(b)**

PF₅ has sp^3d hybridization (trigonal bipyramid); BrF₅ has sp^3d^2 hybridization (square pyramidal)

18

In NH₃ sp^3 hybridisation is present but its shape becomes pyramidal due to the presence of one lone pair of electron.

$$\mathbf{H}^{\mathsf{N}} \mathbf{H}^{\mathsf{H}}$$

19

Higher the lattice energy lower the solubility. Out of the four combinations possible, the lattice energy of MgS (bi-bivalent ionic solid) is higher than those of Na₂S, MgCl₂ (uni-bivalent or biuni-valent ionic solids) and NaCl (uni-univalent ionic solids) and hence, MgS is the least soluble.

20

A three electrons in its outermost orbit, its valency is 3. *B* has six electrons in its outermost orbit, its valency is 2

Element

Valency Formula of the compound = A_2B_3

ANSWER-KEY												
Q .	1	2	3	4	5	6	7	8	9	10		
A.	В	С	В	С	В	D	Α	С	В	А		
Q .	11	12	13	14	15	16	17	18	19	20		
A.	B	С	D	С	D	Α	В	D	D	В		