CLASS : XIITH
DATE :

Topic:-Atoms

1

2
(c)

$$
\begin{aligned}
& r_{0}=\frac{(Z e)(2 e)}{4 \pi \varepsilon_{0}(E)}=\frac{2 \times 92\left(1.6 \times 10^{-19}\right)^{2} \times 9 \times 10^{9}}{5 \times 1.6 \times 10^{-13}} \\
& =0.53 \times 10^{-14} \mathrm{~m} \approx 10^{-12} \mathrm{~cm}
\end{aligned}
$$

3
(b)

Wavelength (λ) during transition from n_{2} to n_{1} is given by

$$
\begin{aligned}
\frac{1}{\lambda} & =R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] \\
\Rightarrow \frac{1}{\lambda_{3 \rightarrow 2}} & =R\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=\frac{5 R}{36} \\
\text { and } \frac{1}{\lambda_{4 \rightarrow 2}} & =r\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]=\frac{3 R}{16}
\end{aligned}
$$

$\therefore \quad \frac{\lambda_{4 \rightarrow 2}}{\lambda_{3 \rightarrow 2}}=\frac{20}{27}$
$\Rightarrow \lambda_{4 \rightarrow 2}=\frac{20}{27} \lambda_{0}$
(c)

As energy $\propto \frac{1}{\lambda^{\prime}}$
Therefore, energy corresponding to $1 \AA=2.5 \times 5000 \mathrm{eV}$

4
(d)
$R=\frac{2 \pi^{2} m k^{2} e^{4}}{c \mathrm{~h}^{3}}=\left(\frac{1}{4 \pi \varepsilon_{o}}\right)^{2} \frac{2 \pi^{2} m e^{4}}{c \mathrm{~h}^{3}}$
For maximum wavelength $n=2$

$$
\begin{aligned}
& \therefore \frac{1}{\lambda_{\max }}=1.097 \times 10^{7}\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right] \\
& \frac{1}{\lambda_{\max }}=1.097 \times 10^{7}\left[\frac{1}{1}-\frac{1}{4}\right] \\
&=1.097 \times 10^{7} \times \frac{3}{4} \\
& \Rightarrow \lambda_{\max }= \\
&=1216 \AA=121.6 \mathrm{~m} \\
& \therefore \quad \lambda_{\max }
\end{aligned}=122 \mathrm{~nm} .
$$

(d)

In Lyman series, wavelength emitted is given by

$$
\frac{1}{\lambda}=R\left[\frac{1}{1^{2}}-\frac{1}{n^{2}}\right]
$$

where, $\quad n=2,3,4 \ldots \ldots$
and $R=$ Rydberg's constant

$$
=1.097 \times 10^{7} \mathrm{~m}^{-1}
$$

removed $n=1$.

$$
\begin{aligned}
\therefore E_{n} & =\frac{-13.6 \times(11)^{2}}{(1)^{2}} \mathrm{eV} \\
& =-13.6 \times(11)^{2} \mathrm{Ev}
\end{aligned}
$$

The first photon will excite the hydrogen atom (in ground state) in first excited state (as E_{2} - $E_{1}-10.2 \mathrm{eV}$). Hence, during de-excitation a photon of 10.2 eV will be released. The second photon of energy 15 eV can ionize the atom.
Hence the balance energy $i e$,
$(15-13.6) \mathrm{eV}=1.4 \mathrm{eV}$ is retained by the electron.
Therefore, by the second photon an electron of energy 1.4 eV will be released
(b)

The Kinetic energy of the electron in the nth state

$$
K=\frac{m Z^{2} e^{4}}{8 \varepsilon_{0}^{2} \mathrm{~h}^{2} n^{2}}
$$

The total energy of the electron in the nth state

$$
\begin{aligned}
& T=-\frac{m Z^{2} e^{4}}{8 \varepsilon_{0}^{2} \mathrm{~h}^{2} n^{2}} \\
\therefore \quad & \frac{K}{T}
\end{aligned}=-1
$$

From Hubble 's law

$$
Z \propto r
$$

Where $Z \rightarrow$ red shift, $r \rightarrow$ distance of the galaxy
Also, $\quad Z=\frac{d \lambda}{\lambda}=\frac{v}{c}=\frac{\text { speed of galaxy }}{\text { speed of light }}$
Given $d \lambda=401.8-393.3=8.5 \mathrm{~nm}$, $\lambda=393.3 \mathrm{~nm}$,

$$
\begin{aligned}
Z & =\frac{8.5}{393.3}=0.0216 \\
\text { Also } \quad v & =c Z \\
& =3 \times 10^{8} \times 0.0216 \\
& =64.8 \times 10^{5} \mathrm{~ms}^{-1} \\
\text { Since } 1 \mathrm{~km} & =10^{3} \mathrm{~m}, \text { therefore } \\
v & =6480 \mathrm{kms}^{-1}
\end{aligned}
$$

(d)

Lowest orbit is $n=1$. Three lower orbits correspond to $n=1.2 .3$

$$
\begin{aligned}
& \therefore E_{1}=\frac{13.6}{1^{2}}=13.6 \mathrm{eV}, \\
& E_{2}=\frac{13.6}{2^{2}}=3.4 \mathrm{eV}, E_{3}=\frac{13.6}{3^{2}}=1.5 \mathrm{eV}
\end{aligned}
$$

protons and 2 neutrons which make a nucleus of helium $i e$, helium atom is a deoid of 2 electrons ie, doubly ionized helium atom.
(b)

1. If Assertion is True, Reason is True, Reason is correct explanation of 1
2. If Assertion is True, Reason is True, Reason is not correct explanation of 1
3. If Assertion is True, Reason is False
4. If Assertion is False, Reason is True

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	C	B	C	C	D	D	C	B	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	A	C	D	A	A	B	C	B	B		

