CLASS : XIITH
DATE:

Solutions

Topic:-Atoms

1
(b)

For Balmer series, $n_{f}=2$ and $n_{i}=3,4,5, \ldots$.
Frequency, of 1st spectral line of Balmer series

$$
\begin{array}{ll}
& f=R Z^{2} c\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right) \\
\text { or } & f=R Z^{2} c \times \frac{5}{36} \tag{i}
\end{array}
$$

Frequency, of 2nd spectral line of Balmer series

$$
\begin{equation*}
f^{\prime}=R Z^{2} c\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right) \tag{ii}
\end{equation*}
$$

or $\quad f^{\prime}=R Z^{2} c \times \frac{3}{16}$
Form eqs. (i) and (ii), we have

$$
\begin{gathered}
\frac{f}{f^{\prime}}=\frac{20}{27} \\
\therefore \quad f^{\prime}=\frac{27}{20} f=1.35 f
\end{gathered}
$$

(d)

Let a particle of change q having velocity v approaches Q upto a closest distance r and if the velocity becomes $2 v$, the closest distance will be r.'
The law of conservation of energy yields,
Kinetic energy of particle=electric potential energy between them at closest distance of approach.

Or

$$
\begin{align*}
& \frac{1}{2} m v^{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{q}}{r} \\
& \frac{1}{2} m v^{2}=k \frac{Q q}{r} \tag{i}
\end{align*}
$$

Or

$$
\left(\mathrm{k}=\text { constant }=\frac{1}{4 \pi \varepsilon_{0}}\right)
$$

and

$$
\begin{equation*}
\frac{1}{2} m(2 v)^{2}=k^{\frac{Q q}{r^{\prime}}} \tag{ii}
\end{equation*}
$$

Dividing Eq. (i) by Eq.(ii),

$$
\frac{\frac{1}{2} m v^{2}}{\frac{1}{2} m(2 v)^{2}}=\frac{\frac{k Q q}{r}}{=\frac{k q q}{r^{\prime}}}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{4}=\frac{r^{\prime}}{r} \\
\Rightarrow & \mathrm{r}^{\prime}=\frac{r}{4}
\end{array}
$$

(a)

The positively charged nucleus, has electrons revolving around it in stationary orbits. The Coulomb's force provides the necessary centripetal force attraction to keep the electrons is orbits.

(a)

Wavelength emitted (λ) is given by
$\frac{1}{\lambda}=R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5 R}{36}$
$\lambda=\frac{36}{5 R}$
(d)

Infrared radiation corresponds to least value of $\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$, $i e$, from Paschen, Brackett and
Pfund series. Thus the transition corresponds to $5 \rightarrow 3$.
(c)

In hydrogen atom, $E_{n}=\frac{R_{\mathrm{h}} c}{n^{2}}$
Also, $E_{n} \propto m$, where m is the mass of the electron. Here, the electron has been replaced by a particle, whose mass is double the mass of an electron. Therefore, this hypothetical atom, energy is nth orbit will be given by
$E_{n}=-\frac{2 R_{\mathrm{h}} c}{n^{2}}$
The longest wavelength (or minimum energy) photon will correspond to the transition of particle from $n=3$ to $n=2$
$\Rightarrow \frac{\mathrm{h}^{c}}{\lambda_{\max }}=E_{3}-E_{2}=2 R \mathrm{~h} c\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=2 R \mathrm{~h} c \times \frac{5}{36}$
$\therefore \quad \lambda_{\text {max }}=\frac{\mathrm{h}^{c}}{\frac{5}{18} R_{\mathrm{h}} c}=\frac{18}{5 R}$
(c)

For Balmer series, $n_{1}-2, n_{2}=3$ for 1 st line and $n_{2}=4$ for second line

$$
\begin{aligned}
& \frac{\lambda_{1}}{\lambda_{2}}=\left(\frac{\frac{1}{2^{2}}-\frac{1}{4^{2}}}{\frac{1}{2^{2}}-\frac{1}{3^{2}}}\right)=\frac{3 / 16}{5 / 16}=\frac{3}{16} \times \frac{36}{5}=\frac{27}{20} \\
& \lambda_{2}=\frac{20}{27} \lambda_{1}=\frac{20}{27} \times 6561=4860 \AA
\end{aligned}
$$

8

9
(b)

Number of spectral lines $=\frac{n(n-1)}{2}=\frac{3(3-1)}{2}=3$
(b)

No. of neutrons in $\mathrm{C}^{12}=12-6=6$
No. of electrons in $\mathrm{C}^{14}=14-6=8$
(c)

Energy of helium ions.

$$
E_{n}=-\frac{13.6 Z^{2}}{n^{2}} \mathrm{eV}
$$

In minimum position, $n=1$
For $\mathrm{He}^{+}, Z=2$

$$
\begin{aligned}
& E=\frac{-13.6 \times(2)^{2}}{1} \mathrm{eV} \\
& E=54.4 \mathrm{eV}
\end{aligned}
$$

(a)

Radius of orbit

$$
\begin{aligned}
& r_{n}=\frac{n^{2} \mathrm{~h}^{2}}{4 \pi^{2} k^{2} m_{e}^{2}} \\
& r_{n} \propto n^{2}
\end{aligned}
$$

Energy $\quad E=-R c h \frac{Z^{2}}{n^{2}}$

$$
E \propto \frac{1}{n^{2}}
$$

(a)

$$
\frac{\lambda_{B}}{\lambda_{L}}=\frac{\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)}{\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)}=\frac{3 / 4}{5 / 36}=\frac{27}{5}
$$

$$
\lambda_{L}=\frac{5}{27} \lambda_{B}=\frac{5}{27} \times 6563=1215.4 \AA
$$

(b)

Ionization energy corresponding to ionization potential

$$
=-13.6 \mathrm{eV}
$$

Photon energy incident $=12.1 \mathrm{eV}$
So,the energy of electron in excited state

$$
=-13.6+12.1=-1.5 \mathrm{eV}
$$

ie, $\quad E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV}$

$$
-1.5=-\frac{-13.6}{n^{2}}
$$

$\Rightarrow \quad n^{2}=\frac{-13.6}{-1.5} \approx 9$
$\therefore \quad n=3$
$i e$, energy of electron in excited state corresponds to third orbit.
The possible spectral lines are when electron jumps from orbit 3rd to 2nd; 3rd to 1st and 2 nd to 1 st. Thus, 3 spectral lines are emitted.
(d)

Solar Spectrum is an example of line absorption Spectrum.
(a)

For hydrogen or hydrogen type atoms

$$
\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n_{T}^{2}}-\frac{1}{n_{i}^{2}}\right)
$$

In the transition from $n i \rightarrow n f$

$$
\begin{array}{rlrl}
\therefore & & \lambda \propto \frac{1}{Z^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)} \\
\therefore & & \frac{\lambda_{2}}{\lambda_{1}} & =\frac{Z_{1}^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)_{1}}{Z_{2}^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)_{2}} \\
& \lambda_{2} & =\frac{\lambda_{1} Z_{1}^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)_{1}}{Z_{2}^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)_{2}}
\end{array}
$$

Substituting the values, we have

$$
=\frac{(6561)(1)^{2}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)}{(2)^{2}\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)}=1215 \AA
$$

$$
\begin{aligned}
& E=E_{4}-E_{3} \\
& =-\frac{13.6}{4^{2}}-\left(-\frac{13.6}{3^{2}}\right)=-0.85+1.51 \\
& =0.66 \mathrm{eV}
\end{aligned}
$$

(d)

Nucleus Contains only the neutrons and protons.
(a)

Number of emitted spectral lines

$$
N=\frac{n(n-1)}{2}
$$

Case I

$$
\begin{array}{rlrl}
& N=3 \\
& & 3=\frac{n_{1}\left(n_{1}-1\right)}{2} & \\
\Rightarrow & n_{1}^{2}-n_{1}-6=0 \\
\left(n_{1}-3\right)\left(n_{1}+2\right) & =0 \\
& n_{1}=3
\end{array}
$$

Case II

$$
\begin{gathered}
N=6 \\
6=\frac{n_{2}\left(n_{2}-1\right)}{2} \\
\Rightarrow\left(n_{2}-4\right)\left(n_{2}+3\right)=0 \\
n_{2}^{2}-4, n_{2}=-3
\end{gathered}
$$

Again , as n_{2} is always positive

$$
\therefore \quad n_{2}=4
$$

Velocity of electron $v=\frac{Z e^{2}}{2 \varepsilon_{\mathrm{oh}} n}$

$$
\begin{array}{ll}
\therefore & \frac{v_{1}}{v_{2}}=\frac{n_{2}}{n_{1}} \\
\Rightarrow & \frac{v_{1}}{v_{2}}=\frac{4}{3}
\end{array}
$$

(c)

According to the Bohr's theory the wavelength of radiations emitted from hydrogen atom given by

$$
\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] \Rightarrow \lambda=\frac{n_{1}^{2} n_{2}^{2}}{\left(n_{2}^{2} n_{1}^{2}\right) R}
$$

For maximum wavelength if $n_{1}=n$, then $n_{2}=n+1$
$\therefore \lambda$ is maximumfor $n_{2}=3$ and $n_{1}=2$.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	D	A	A	D	C	C	B	B	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	A	D	A	B	D	A	D	D	A	C		

