

CLASS : XIITH DATE : SUBJECT : PHYSICS DPP NO. : 3

Topic :-Atoms

- 1. The angular momentum of electron in hydrogen atom is proportional to
 - a) \sqrt{r} b) 1/r c) r^2 d) $1/\sqrt{r}$
- 2. Hydrogen atoms are excited from ground state of the principal quantum number 4. Then the number of spectral lines observed will be
 a) 3 b) 6 control b
- 3. Wavelength of first line in Lyman series is λ . The wavelength of first line in Balmer series is

	a) $\frac{5}{27}\lambda$ b)	$\frac{36}{5}\lambda$		c) $\frac{27}{5}$	1	d) $\frac{1}{3}$	$\frac{5}{6}\lambda$
4.	Mercury vapour lamp give	es					
	a) Continuous spectrum			b) Line	e spectru	m	
	c) Band spectrum			d) Absorption spectrum			

5. For an electron in the second orbit of Bohr's hydrogen atom, the moment of linear momentum is

a <i>nπ</i>	b) 2π h	c) $\frac{2h}{\pi}$	d) $\frac{n}{\pi}$
-------------	-------------	---------------------	--------------------

- 6. The angular momentum (L) of an electron moving in a stable orbit around nucleus is
a) Half integral multiple of $\frac{h}{2\pi}$ b) integral multiple of hc) integral multiple of $\frac{h}{2\pi}$ d) Half integral multiple of h
- 7. The shortest wavelength in Lyman series is 91.2 nm. The longest wavelength of the series is
a) 121.6 nmb) 182.4 nmc) 234.4 nmd) 364.8 nm

8.	The first excited state of hydrogen atoms is 10.2 eV above its ground state. The temperature needed to excite hydrogen atoms to first excited level, is						
	a) 7.9 × 10 ⁴ K	b) $3.5 \times 10^4 \text{K}$	c) 5.8 \times 10 ⁴ K	d) $^{14 \times 10^{4} \text{ K}}$			
9.	The ratio of the energi a) 9/4	es of the hydrogen atom b)4/1	i in its first to second exc c) 8/1	cited states is d)1/8			
10.	If λ is the wavelength of hydrogen atom from the transition $n = 3$ to $n=1$, then what is the wavelength for doubly ionised lithium ion for same transition?						
	a) $\frac{\lambda}{3}$	b) 3λ	c) $\frac{\lambda}{9}$	d) ^{9 λ}			
11.	. In H spectrum, the wavelength of H_{α} line is 656 nm whereas in a distance galaxy, the wavelength of H_{α} line is 706 nm. Estimate the speed of galaxy with respect to earth						
	a) $2 \times 10^8 \text{ms}^{-1}$	b) $2 \times 10^7 \text{ms}^{-1}$	c) $2 \times 10^{6} \text{ms}^{-1}$	d) $^{2 \times 10^{5} \text{ms}^{-1}}$			
12.	In a hydrogen atom, th is	ie ele <mark>ctron in a given</mark> orb	bit has total energy - 1.5	eV. The potential energy			
	a) 1.5 eV	b) -1.5 eV	c) 3.0 eV	-3.0 eV d)			
13.	The first member of th	e Balmer's series of the	hydrogen has a wavelen	igth λ , the wavelength of			
	a) $\frac{27}{20}\lambda$	b) $\frac{20}{27\lambda}$	c) $\frac{27}{20}\lambda$	d)None of these			
14.	Energy required for the electron excitation in Li ²⁺ from the first to the third Bohr orbit is						
	a) 36.3 eV	b) 108.8 eV	c) 122.4 eV	d) ^{12.1eV}			
15.	The ionisation potential of mercury is 10.39 V. How far an electron must travel in an electric field of 1.5 \times 10 ⁶ Vm ⁻¹ to gain sufficient energy to ionize mercury?						
	a) $\frac{10.39}{1.5 \times 10^6} \times 1.0 \times 10^{-19} \mathrm{m}$		b) $\frac{10.39}{1.5 \times 10^6}$ m				
	c) $1.39 \times 1.6 \times 10^{-19}$	m	d) $\frac{10.39}{1.6 \times 10^{-19}}$ m				
16.	Wavelength of light en a) 6563 Å	nitted from second orbit b)4102 Å	to first orbit in a hydrog c) 4861 Å	gen atom is d) 1215 Å			

- 17. White light is passed through a dilutee solution of potassium permanganate. The spectrum produced by the emergent light is
 - a) Band emission spectrumc) Band absorption spectrum

- b) Line emission spectrum
- d) Line absorption spectrum
- 18. The magnetic moment of the ground state of an atom whose open sub-shell is half-filled with five electrons is

a) $\sqrt{35}\sqrt{\mu_B}$ b) $35 \,\mu_B$ c) $35\sqrt{\mu_B}$ d) $^{\mu_B\sqrt{35}}$

- 19. The wavelengths involved in the Spectrum of deuterium $\binom{2}{1}D$ are slightly different from that of hydrogen Spectrum, because
 - a) Sizes of the two nuclei are different
 - b) Nuclear forces are different in the two cases
 - c) Masses of the two nuclei are different
 - d) Attraction between the electron and the nucleus is different in the two cases.
- 20. Consider an electron in the *n*th orbit of a hydrogen atom in the Bohr model. The circumference of the orbit can be expressed in terms of the de-Broglie wavelength λ of that electron as

