CLASS : XIITH
DATE :
Solutions

Topic:-Atoms

1
(a)

Angular momentum $=\frac{n_{\mathrm{h}}}{2 \pi} i e$,
$L \propto n \propto \sqrt{r} \quad\left(\because r \propto n^{2}\right)$
2
(b)

Number of spectral lines $=\frac{n(n-1)}{2}=\frac{4(43)}{2}=6$
(c)

According to Bohr, the wavelength emitted when an electron jumps from n_{1} th to n_{2} th orbit is

$$
\begin{aligned}
E & =\frac{\mathrm{h}^{C}}{\lambda}=E_{2}-E_{1} \\
\frac{1}{\lambda} & =R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
\end{aligned}
$$

For first line in Lyman series

$$
\begin{equation*}
\frac{1}{\lambda_{L}}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{3 R}{4} \tag{i}
\end{equation*}
$$

For first line in Balmer series,

$$
\begin{equation*}
\frac{1}{\lambda_{B}}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5 R}{36} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii)

$$
\begin{array}{lll}
\therefore & \frac{\lambda_{B}}{\lambda_{L}}=\frac{3 R}{4} \times \frac{36}{5 R}=\frac{27}{5} & \\
\therefore & \lambda_{B}=\frac{27}{5} \lambda & \left(\because \lambda_{L}=\lambda\right)
\end{array}
$$

(b)

When electric discharge is passed through mercury vapour lamp, eight to ten lines from red to violet are seen in its spectrum. In some line spectra there are only a few lines, while in many of them there are hundreds of them. Hence, mercury vapour lamp gives line spectra.
(d)

The moment of linear momentum is angular momentum

$$
L=m v r=\frac{n_{\mathrm{h}}}{2 \pi}
$$

Here, $n=2$
$\therefore \quad L=\frac{2 h}{2 \pi}=\frac{\mathrm{h}}{\pi}$
(c)

For an electron to remain orbiting around the nucleous, the angular momentum (L) should be an integral multiple of $\mathrm{h} / 2 \pi$.
ie, $\quad m v r=\frac{n_{\mathrm{h}}}{2 \pi}$
where $n=$ principle quantum number of electron, and $\mathrm{h}=$ Planck's constant
(a)

The wavelength (λ) of lines is given by

$$
\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right)
$$

For Lyman series, the shortest wavelength is for $n=\infty$ and longest is for $n=2$.

$$
\begin{align*}
& \therefore \quad \frac{1}{\lambda_{s}}=R\left(\frac{1}{1^{2}}\right) \tag{i}\\
& \frac{1}{\lambda_{L}}=R\left(\frac{1}{1}-\frac{1}{2^{2}}\right)=\frac{3}{4} R \tag{ii}
\end{align*}
$$

Dividing Eq.(ii) by Eq. (i) , we get

$$
\frac{\lambda_{L}}{\lambda_{s}}=\frac{4}{3}
$$

Given, $\quad \lambda_{s}=91.2 \mathrm{~nm}$

$$
\Rightarrow \quad \lambda_{L}=91.2 \times \frac{4}{3}=121.6 \mathrm{~nm}
$$

(a)

According to kinetic interpretation of temperature

$$
E k=\left(=\frac{1}{2} m v^{2}\right)=\frac{3}{2} k T
$$

Given: $E_{i}=10.2 \mathrm{eV}=10.2 \times 1.6 \times 10^{-19} \mathrm{~J}$
So, $\quad \frac{3}{2} k T=10.2 \times 1.6 \times 10^{-19} \mathrm{~J}$
Or $\quad T=\frac{2}{3} \times \frac{10.2 \times 1.6 \times 10^{-19}}{k}$

$$
=\frac{2}{3} \times \frac{10.2 \times 1.6 \times 10^{-19}}{1.38 \times 10^{-23}}=7.9 \times 10^{4} \mathrm{~K}
$$

(a)

1st excited state corresponds to $n=2$
2nd excited state corresponds to $n=3$
$\frac{E_{1}}{E_{2}}=\frac{n_{3}^{2}}{n_{2}^{2}}=\frac{3^{2}}{2^{2}}=\frac{9}{4}$
(c)

For wavelength

$$
\frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

Here, transition is same
So, $\quad \lambda \propto \frac{1}{z^{2}}$

$$
\begin{aligned}
& \frac{\lambda_{\mathrm{H}}}{\lambda_{\mathrm{Li}}}=\frac{\left(Z_{\mathrm{Li}}\right)^{2}}{\left(Z_{\mathrm{H}}\right)^{2}}=\frac{(3)^{1}}{(1)^{2}}=9 \\
& \lambda_{\mathrm{Li}}=\frac{\lambda_{\mathrm{H}}}{9}=\frac{\lambda}{9}
\end{aligned}
$$

(b)
$\Delta \lambda=706-656=50 \mathrm{~nm}=50 \times 10^{-9} \mathrm{~m}, v=$?
As $\frac{\Delta^{\lambda}}{\lambda}=\frac{v}{c}$
$\therefore v=\frac{\Delta^{\lambda}}{\lambda} \times c=\frac{50 \times 10^{-9}}{656 \times 10^{-9}} \times 3 \times 10^{8}$
$=2.2 \times 10^{7} \mathrm{~ms}^{-1}$

(d)

PE $=2 \times$ total energy
$=2(-1.5) \mathrm{eV}=-3.0 \mathrm{eV}$
(b)

The wavelength of series for n is given by

$$
\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)
$$

were R is Rydberg's constant.
For Balmer series $n=3$ gives the first member of series and $n=4$ gives the second member of series. Hence,

$$
\begin{align*}
& \frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right) \\
& \frac{1}{\lambda_{1}}=R\left(\frac{5}{36}\right) \tag{i}
\end{align*}
$$

$$
\begin{array}{rlrl}
\frac{1}{\lambda_{2}} & =R\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right) & \\
& =R\left(\frac{12}{16 \times 4}\right)=\frac{3 R}{16} \quad \ldots(\text { ii }) \tag{ii}\\
\Rightarrow \quad \frac{\lambda_{2}}{\lambda_{1}} & =\frac{16}{3} \times \frac{5}{36}=\frac{20}{27} & \\
\lambda_{2} & =\frac{20}{27} \lambda \quad\left(\because \lambda_{1}=\lambda\right)
\end{array}
$$

(b)

$$
\begin{aligned}
\Delta E=13.6 Z^{2} & \left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\
& =13.6(3)^{2}\left[\frac{1}{1^{2}}-\frac{1}{3^{2}}\right] \\
& =108.8 \mathrm{eV}
\end{aligned}
$$

(b)

Electric field $\mathrm{E}=\frac{V}{d}$

$$
\begin{aligned}
d & =\frac{V}{E} \\
& =\frac{10.39}{1.5 \times 10^{6}} \mathrm{~m}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right) \\
\Rightarrow \quad \frac{1}{\lambda} & =1.097 \times 10^{7} \times \frac{3}{4} \\
\therefore \quad \lambda & =1.215 \times 10^{-7} \mathrm{~m}=1215 \AA
\end{aligned}
$$

(d)

The magnetic moment of the ground state of an atom is

$$
\mu=\sqrt{n(n+2) \mu_{B}}
$$

Where, μ_{B} is gyromagnetic moment. Here, open sub-shell is half-filled with 5 electrons. $i e$, $n=5$

$$
\begin{aligned}
\therefore \quad \mu & =\sqrt{5(5+2) \cdot \mu_{B}} \\
& =\mu_{B} \sqrt{35}
\end{aligned}
$$

(d)

Circumference of nth Bohr orbit $=n$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	B	C	B	D	C	A	A	A	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	D	B	B	B	D	C	D	C	D			

