

5

(c)

(b)

(b)

(a)

(b)

(a)

The excitation energy in the first excited state is

$$E = RhcZ^{2}\left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right) = (13.6 \text{ eV}) \times Z^{2} \times \frac{3}{4}$$

$$\therefore \qquad 40.8 = 13.6 \times Z^{2} \times \frac{3}{4}$$

$$\Rightarrow \qquad Z = 2$$

So, the ion in problem is He⁺. The energy of the ion in the ground state is

$$E = \frac{RhcZ^2}{1^2} = 13.6 \times 4 = 54.4 \text{ eV}$$

Hence, 54.4 eV is required to remove the electron from the ion.

6

Ultraviolet regionLyman seriesVisible regionBalmer seriesInfrared regionPaschen series, Brackett seriesPfund series

From the above chart it is clear that Balmer series lies in the visible region of the electromagnetic spectrum.

7

At distance of closest approach relative velocity of two particles is v. Here target is considered as stationary, so α -particle comes to rest instantaneously at distance of closest approach. Let required distance is r, then from work energy-theorem.

$$0 - \frac{mv^2}{2} = -\frac{1}{4\pi\varepsilon_0} \frac{Z_e \times Z_e}{r}$$

r \approx $\frac{1}{m}$
 $\propto \frac{1}{v^2}$
 $\propto Ze^2$

8

As $r \propto n^2$, therefore, radius of 2nd Bohr's orbit = $4a_0$

9

$$KE = \frac{1}{2} \frac{e^2}{r}$$

10

 $E = -Z^2 \frac{13.6}{n^2} \text{eV}$

For first excited state,

$$E_2 = -3^2 \times \frac{13.6}{4} = -30.6 \text{ eV}$$

Ionisation energy for first excited state of Li²⁺ is 30.6 eV.

11

12

13

(b)

(a)

(a)

For maximum wavelength of Balmer series

$$\frac{1}{\lambda_{\max}} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \frac{R \times 5}{36} \qquad \dots(i)$$

For minimum wavelength of Balmer series,

$$\frac{1}{\lambda_{\min}} = R\left(\frac{1}{2^2} - \frac{1}{\infty}\right) = \frac{R}{4}$$
 ...(ii)

From Eqs.(i)and (ii), we have

$$\therefore \qquad \frac{\lambda_{\min}}{\lambda_{\max}} = \frac{R \times 5}{36} \times \frac{4}{R} = \frac{5}{9}$$

(a)
Frequency,
$$v = RC\left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$$

 $v_1 = RC\left[1 - \frac{1}{\infty}\right] = RC$
 $v_2 = RC\left[1 - \frac{1}{4}\right] = \frac{3}{4}RC$
 $v_3 = RC\left[\frac{1}{4} - \frac{1}{\infty}\right] = \frac{RC}{4}$
 \Rightarrow $v_1 - v_2 = v_3$

Time period of electron,
$$T = \frac{4\epsilon_0^2 n^3 h^3}{m Z^2 e^4}$$

 $\therefore \qquad T \propto n^3$
 $\therefore \qquad \frac{1}{\text{frequency } (f)} \propto n^3$
or $f \propto n^{-3}$
(a)

14

$$E = E_2 - E_1 = -\frac{13.6}{2^2} - \left(-\frac{13.6}{1^2}\right) = 10.2 \text{ eV}$$

15

$$\frac{1}{\lambda_{\min}} = R\left[\frac{1}{2^2} - \frac{1}{3^2}\right] = \frac{R \times 5}{36}$$
$$\frac{1}{\lambda_{\max}} = R\left[\frac{1}{2^2} - \frac{1}{\infty}\right] = \frac{R}{4}$$
$$\frac{\lambda_{\min}}{\lambda_{\max}} = \frac{R \times 5}{36} \times \frac{4}{R} = \frac{5}{9}$$

16

(d)

Radius of orbit of electron in *n*th excited state of hydrogen

PRERNA EDUCATION

$$r = \frac{\varepsilon_0 h^2 n^2}{\pi m Z e^2}$$

$$\therefore \quad r \propto \frac{n^2}{Z} \qquad \dots(i)$$

$$\therefore \quad \frac{r_1}{r_2} = \frac{n_1^2}{n_2^2} \times \frac{Z_2}{Z_1}$$

But $r_1 = r_2$
So, $n_2^2 = n_1^2 \times \frac{Z_2}{Z_1}$
Here,
 $n_1 = 1$ (ground state of hydrogen),
 $Z_1 = 1$ (atomic number of hydrogen),
 $Z_2 = 4$ (atomic number of beryllium)

$$\therefore \quad \sqrt{n_2^2} = (1)^2 \times \frac{4}{1}$$

or $n_2^2 = 4$

n), n)

$$\therefore \sqrt{n_2^2 = (1)^2 \times \frac{2}{3}}$$

or $n_2^2 = 4$
or $n_2 = 2$

17 (a)

For spin-orbit interaction, only the case of $l \ge 1$ is important since spin orbit interaction vanishes for l=0.

19

(b)

Hydrogen atom normally stays in lowest energy state (n=1), where its energy is

$$E_1 = \frac{Rhc}{1^2} = -Rhc$$

On being ionized its energy becomes zero. Thus, ionization of hydrogen atom is

= energy after ionisation – energy before ionisation = 0 - (-Rhc) = Rhc $= (1.097 \times 10^7 \text{ m}^{-1}) (6.63 \times 10 - 34 \text{ J} - \text{s})(3 \times 108 \text{ ms}^{-1})$ $=21.8 \times 10^{-19}$ J $=\frac{21.8 \times 10^{-19}}{1.6 \times 10^{-19}} = 13.6 \text{ eV}$

20

(d)

In ground state TE = -13.6 eV

In first excited state, TE = -3.4 eV, *ie*,

10.2 eV above the ground state.

If ground state energy is taken as zero, the total energy in

First excited state = 10.2 eV

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	В	В	В	С	В	В	А	В	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	А	А	В	A	А	D	A	D	В	D

