

This reaction is an example of carbylamine reaction and it is used for the distinction of *p*-amines from *s*- and *t*-amines or identification of *p*-amino group.

5

(c)

(d)

Roulle first isolated urea (in 1773) from urine and named it as urea.

6

Reduction of NO_2 group to $NH_2 \text{group}$ is taking place by Fe/HCI.

8

Sulphanilic acid exists as a dipolar ion which has acidic and basic groups in the same molecule. Such ions are called Zwitter ions or inner salts

10 **(a)**

For detection of secondary amines Liebermann's nitroso test is used.

11 **(c)**

$$C_2H_5NH_2 + Na \rightarrow C_2H_5NHNa + \frac{1}{2}H_2$$

12

(b)

Only 1° aromatic amine (primary aromatic amine) from diazonium salts at low temperature (0° - 5°C). A reaction in which $-NH_2$ group is converted into diazo group ($-N^+ \equiv N$) is called diazotization. Diazotized salts are stable in cold aqueous solution.

$$C_6H_5NH_2+HCl \xrightarrow{0^\circ-5^\circC} C_6H_5NH2Cl^-$$

$$NaNO_2 + HCl \xrightarrow{0^{\circ}-5^{\circ}C} + HNO_2 + NaCl$$

$$\stackrel{+}{C_6H_5NCl^- +HNO_2} \xrightarrow{0^{\circ}-5^{\circ}C} C_6H_5N_2Cl^- + 2H_2O$$

$$C_{6}H_{5}NH_{2,} \xrightarrow[H_{3}C]{H_{2}N} C_{6}H_{4}, \xrightarrow[O_{2}N]{C_{6}H_{4}}$$

Amines, so undergo diazotization but $C_6H_5CH_2NH_2$ (aliphatic amine) will not undergo diazotisation.

13 **(b)**

Aniline is prepared by the reduction of nitrobenzene in acidic medium.

(a)

14 **(b)**

Amines possess fishy smell.

16

Electrons donors are bases. Greater the stabilisation of cation formed by loss of electron more will be basicity of amine.

2° amine is more basic than 3° amine because 2° amine is stabilized by hydrogen bonding with solvent molecule.

17 **(c)**

 $RCONH_2 + NaOBr \rightarrow RNH_2 + NaBr + Na_2CO_3 + 2H_2O$

'X'

18 **(d)**

Benzyl amine $(C_6H_5CH_2NH_2)$ is more basic than aniline $(C_6H_5NH_2)$ because N-atom of aniline is delocalized over the benzene ring. However in benzyl amine the lone pair of electrons on the N-atom is not conjugated with the benzene ring and therefore it is not delocalized. Hence, the lone pair of electrons on the N-atom in benzyl amine is more readily available for protonation than that on the N-atom of aniline. Thus, the benzyl amine is a stronger base than aniline.

19 **(d)**

Tertiary amines react as, $(CH_3)_3N + HNO_2 \rightarrow (CH_3)_3NHNO_2$

ANSWER-KEY										
Q .	1	2	3	4	5	6	7	8	9	10
A.	В	В	D	Α	С	D	В	D	D	А
Q .	11	12	13	14	15	16	17	18	19	20
A.	С	В	В	В	С	Α	С	D	D	В