

Class: XIIth Date:

Solutions

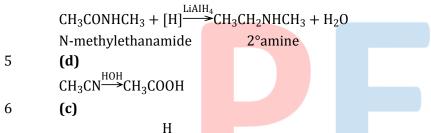
Subject: CHEMISTRY

DPP No.: 10

Topic:- Amines

2 **(c)**

Hofmann's bromamide reaction is used to convert amide to amine.


$$RCONH_2 + Br + 4KOH \rightarrow RNH_2 + K_2CO_3 + 2KBr + 2H_2O$$

amide

amine

4 **(d)**

Secondary amides such as N-methylethanamide on reduction with LiAIH_4 give secondary amines.

 $C_2H_5NH_2 + O = C - C_6H_5 \rightarrow C_2H_5N = HCC_6H_5 + H_2O$

Benzaldehyde

(A)
$$NH_{2}CO(NH_{2} + H;NH\cdot NH_{2} \longrightarrow NH_{2}CONHNH_{2} + NH_{3}$$
urea hydrazine
(B)

$$C_2H_5NH_2 + NOCl \rightarrow C_2H_5Cl + H_2O + N_2$$
(C)

11 **(c)**

The reaction is believed to follow the mechanism.

$$R$$
— $CONH_2 + OBr$ — $\rightarrow RCONHBr + OH$

$$RCONHBr + OH^{-} \rightarrow RCONBr + H_2O$$

$$RCONBr \longrightarrow R-C=O+Br^-R-C=O \longrightarrow R-\ddot{N}=C=O$$

$$| \qquad \qquad | \qquad \qquad |$$

$$N: \qquad \qquad N:$$

$$R-N=C=O+2OH^- \longrightarrow RNH_2 + CO_3^{2-}$$

12 **(d)**

 HNO_2 reacts to give an alcohol means the compound is primary amine.

C₅H₁₃N means C₅H₁₁NH₂(primary amine)

Optically active alcohol means C_5H_{11} segment contain a chiral carbon.

Pentan-2-amine

13 **(b)**

$$R - CN + 4[H] \xrightarrow{\text{LiAIH}_4} R - CH_2NH_2$$

Alkyl nitriles primary amine

14 **(d)**

Electron donors are bases. In the given choices structure which does not involve resonance will have electron easily available for donation, hence most basic.

- : Only in choice (b) electrons are not in conjugation with double bond of adjacent atom.
- : Compound in choice (b) is most basic.

15 **(b)**

$$RBr + KCN \rightarrow RCN \xrightarrow{Reduction} RCH_2NH_2$$

16 **(d)**

It is methyl amine which, being basic dissolves in dilute HCI. It with NaNO₂ evolves nitrogen gas leaving behind methyl alcohol which has smell of wood-spirit.

$$CH_3NH_2 \xrightarrow{HCI} CH_3NH_2.HCI$$

$$CH_3NH_2 + HNO_2 \xrightarrow{NaNO_2/HCI} CH_3OH + N_2\uparrow + H_2O$$

methyl alcohol

17 **(b**)

Benzaldehyde condenses with N, N-diamethyl aniline in presence of anhydrous ZnCl_2 to give malachite green

$$\begin{array}{c} \text{H-} & \text{CH}_3 \\ \text{CH}_3 & \text{Anhy.} \\ \text{H-} & \text{N-} & \text{CH}_3 & \text{Anhy.} \\ \text{CH}_3 & \text{-H}_2\text{O} & \text{CH}_3 \\ \end{array}$$

19 **(b)**

This is carbylamine reaction which is used to distinguish 1° amines from other amines. The reaction is given by 1° amines only.

$$C_2H_5NH_2 + CHCI_3 + 3KOH \rightarrow C_2H_5N \xrightarrow{=} C + 3KCI + 3H_2O$$

$$RNH_2 + CHCI_3 + 3KOH \rightarrow R - N \xrightarrow{=} C + 3KCI + 3H_2O$$

1°amine chloroform isocyanide (bad smelling)

20 **(b)** $NH_2CONH_2 + HNHCONH_2 \rightarrow NH_2CONHCONH_2 + NH_3$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	С	С	D	D	С	Α	С	С	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	D	В	D	В	D	В	В	В	В

