

it is a example of carbylamines reaction

(a)

9

Cyanides are hydrolysed either by alkali or acid to give carboxylic acid.

$$R - CN + 2H_2ONaOHR - COOH + NH_3$$

10 **(a)**

 $C_2H_5NH_2 + NOCl \rightarrow C_2H_5Cl + N_2 + H_2O$

11

(b)

By using H_2S , NH_3 as reagent, selective reduction takes place

12 **(b)**

14

2 amines are more basic than 1 amines due to +ve IE of -CH₃ gp. In amide the resonance give rise to less availability to electron pair for coordination and thus less basic. The negative

Nitration of aniline also gives *m*-nitro aniline in strong acidic medium because in strong acidic condition protonation of $-NH_2$ group gives anilinum ion ($+NH_3$) which is deactivating in nature and of *m*-directive nature

15

(a)

Grabriel's synthesis : Phthalimide is reacted with KOH to form potassium phthalimide. The potassium salt is treated with an alkyl halide. The product N-alkyl phthalimide is put to hydrolyse with hydrochloric acid, then primary amine is formed.

16

(b)

$$C_6H_5NO_2$$
 Sn/HClC₆H₅NH₂

Nitrobenzene Aniline

Nitrobenzene in reduction with Sn and HCI produce aniline. Hence, 'X' is identified as -N H₂ group.

17 **(d)**

 $CH_{3}CHOH_{2}NOHCH_{3}CH = NOHReductionCH_{3}CH_{2}NH_{2}NOClCH_{3}CH_{2}Cl$

Acetaldehyde	ethyl amine	ethyl chloride

 $(A) \qquad \qquad (B) \qquad \qquad (C)$

19 **(b)**

 $CH_3CH_2 - 0 - N = 0$ is a nitrite derivative, hence it is not a nitro derivative.

20

(c)

Basic nature of an amine depends upon availability of lone pair on nitrogen atom. If lone pair is easily available the compound would be more basic.

Dut to +I effect of methyl group, methyl amine is more basic than ammonia and dimethyl amine is more basic than methyl amine. While aniline is a weaker base than ammonia due to delocalization of lone pair of nitrogen atom at different position.

ANSWER-KEY										
Q .	1	2	3	4	5	6	7	8	9	10
A.	Α	Α	Α	D	Α	С	Α	D	Α	A
Q .	11	12	13	14	15	16	17	18	19	20
A.	В	В	Α	С	Α	В	D	D	В	С