Class: XIIth
Subject : PHYSICS
Date :

Topic :-Alternating Current

1. An $L C R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $C=0.1 \mu F$. The impedance of the circuit will be minimum for a frequency of
a) $\frac{10^{5}}{2 \pi} s^{-1}$
b) $\frac{10^{6}}{2 \pi} s^{-1}$
c) $2 \pi \times 10^{5} s^{-1}$
d) $2 \pi \times 10^{6} s^{-1}$
2. A metal rod of resistance 20Ω is fixed along a diameter of a conducting ring of radius 0.1 m and lies on $x-y$ plane. There is a magnetic field $\overrightarrow{\boldsymbol{B}}=(50 \mathrm{~T}) \hat{k}$. The ring rotates with an angular velocity $\omega=20$ rads $^{-1}$ about its axis. An external resistance of 10Ω is connected across the centre of the ring and rim. The current through external resistance is
a) $\frac{1}{2} \mathrm{~A}$
b) $\frac{1}{3} \mathrm{~A}$
c) $\frac{1}{4} \mathrm{~A}$
d) Zero
3. A 12 ohm resistor and a 0.21 henry inductor are connected in series to an ac source operating at 20 volts, 50 cycle/second. The phase angle between the current and the source voltage is
a) 30°
b) 40°
c) 80°
d) 90°
4. The ratio of peak value and r.m.s. value of an alternating current is
a) 1
b) $\frac{1}{2}$
c) $\sqrt{2}$
d) $1 / \sqrt{2}$
5. In an induction coil, the coefficient of mutual inductance is 4 H . If current of 5 A in the primary coil is cut off $i 1 / 1500 \mathrm{~s}$, the emf at the terminals of the secondary coil will be
a) 15 kV
b) 60 kV
c) 10 kV
d) 30 Kv
6. The coil of choke in a circuit
a) Increases the current
b) Decreases the current
c) De not change the current
d) Has high resistance to dc circuit
7. In the $L-C-R$ circuit shown, the impedance is

L	C	R
1 H	$20 \mu \mathrm{~F}$	300Ω

200Ω
a) 500Ω
b) 300Ω
c) 100Ω
d)
8. The frequency of ac mains in India is
a) $30 \mathrm{c} / \mathrm{s}$ or Hz
b) $50 \mathrm{c} / \mathrm{s}$ or Hz
c) $60 \mathrm{c} / \mathrm{s}$ or Hz
d) $120 \mathrm{c} / \mathrm{s}$ or Hz
9. In the circuit shown in the figure, the ac source gives a voltage $V=20 \cos (2000 t)$. Neglecting source resistance, the voltmeter and ammeter reading will be

a) $0 V, 0.47 \mathrm{~A}$
b) $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
c) $0 V, 1.4 \mathrm{~A}$
d) $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$
10. An $L C R$ series ac circuit is at resonance with 10 V each across L, C and R. If the resistance is halved, the respective voltage across L, C and R are
a) $10 \mathrm{~V}, 10 \mathrm{~V}$ and 5 V
b) $10 \mathrm{~V}, 10 \mathrm{~V}$ and 10 V
c) $20 \mathrm{~V}, 20 \mathrm{~V}$ and 5 V
d) $20 \mathrm{~V}, 20 \mathrm{~V}$ and 10 V
11. The readings of ammeter and voltmeter in the following circuit are respectively

2.2A, 220V
a) $2 \mathrm{~A}, 200 \mathrm{~V}$
b) $1.5 \mathrm{~A}, 100 \mathrm{~V}$
c) $2.7 \mathrm{~A}, 220 \mathrm{~V}$
d)
12. A rectangular loop with a sliding connector of length $l=1.0 \mathrm{~m}$ is situated in a uniform magnetic field $\mathrm{B}=2 \mathrm{~T}$. Perpendicular to the plane of loop. Resistance of connector is $r=2 \Omega$. Two resistance of 6Ω and 3Ω are connected as shown in figure. The external force required to keep the connector moving with a constant velocity $v=2 \mathrm{~ms}^{-1}$ is
$6 \Omega \longrightarrow v \vec{B} \quad 3 \Omega$
a) 2 N
b) 1 N
c) 4 N
d) 6 N
13. What is the r.m.s. value of an alternating current which when passed through a resistor produces heat which is thrice of that produced by a direct current of 2 amperes in the same resistor
a) 6 amp
b) 2 amp
c) 3.46 amp
d) 0.66 amp
14. A bulb is connected first with dc and then ac of same voltage it will shine brightly with
a) AC
b) $D C$
c) Brightness will be in ratio $1 / 1.4$
d) Equally with both
15. If an alternating voltage is represented as $E=141 \sin (628 t)$, then the rms value of the voltage and the frequency are respectively
a) $141 \mathrm{~V}, 628 \mathrm{~Hz}$
b) $100 \mathrm{~V}, 50 \mathrm{~Hz}$
c) $100 \mathrm{~V}, 100 \mathrm{~Hz}$
d) $141 \mathrm{~V}, 100 \mathrm{~Hz}$
16. Some magnetic flux is changed from a coil of resistance 110Ω. As a result, an induced current is developed in it, which varies with time as shown in figure. The magnitude of change in flux through the coil in weber is

a) 4
b) 8
c) 2
d) 6
17. Two coils A and B have 200 and 400 turns respectively. A current of 1 A in coil A causes a flux per turn of $10^{-3} \mathrm{~Wb}$ to link with A and a flux per turn of $0.8 \times 10^{-3} \mathrm{~Wb}$ through B. The ratio of mutual inductance of A and B is
a) 0.625
b) 1.25
c) 1.5
d) 1.625
18. $220 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ is applied to a resistor. The instantaneous value of voltage is
a) $220 \sqrt{2} \sin 100 \pi t$
b) $220 \sin 100 \pi t$
c) $220 \sqrt{2} \sin 50 \pi t$
d) $220 \sin 50 \pi t$
19. Two circuits have mutual inductance of 0.09 H . Average emf induced in the secondary by a change of current from 0 to 20 A in 0.006 s in primary will be
a) 120 V
b) 200 V
c) 180 V
d) 300 V
20. One $10 \mathrm{~V}, 60 \mathrm{~W}$ bulb is to be connected to 100 V line. The required induction coil has self inductance of value ($f=50 \mathrm{~Hz}$)
a) 0.052 H
b) 2.42 H
c) 16.2 mH
d) 1.62 mH

