

Class : XIIth Date : Subject : PHYSICS DPP No. : 10

Topic :-Alternating Current

1. An *LCR* circuit contains $R = 50 \Omega$, L = 1 mH and $C = 0.1 \mu F$. The impedance of the circuit will

be minimum for a frequency of

a)
$$\frac{10^5}{2\pi}s^{-1}$$
 b) $\frac{10^6}{2\pi}s^{-1}$ c) $2\pi \times 10^5s^{-1}$ d) $2\pi \times 10^6s^{-1}$

- 2. A metal rod of resistance 20 Ω is fixed along a diameter of a conducting ring of radius 0.1 m and lies on x y plane. There is a magnetic field $\vec{B} = (50 \text{ T}) \hat{k}$. The ring rotates with an angular velocity $\omega = 20 \text{ rads}^{-1}$ about its axis. An external resistance of 10 Ω is connected across the centre of the ring and rim. The current through external resistance is
 - a) $\frac{1}{2}$ A b) $\frac{1}{3}$ A c) $\frac{1}{4}$ A d)Zero

3. A 12 *ohm* resistor and a 0.21 henry inductor are connected in series to an ac source operating at 20 *volts*, 50 cycle/second. The phase angle between the current and the source voltage is

- a) 30° b) 40° c) 80° d) 90°
- 4. The ratio of peak value and *r.m.s.* value of an alternating current is
- a) 1
 b) ¹/₂
 c) √2
 d) ^{1/√2}
 5. In an induction coil, the coefficient of mutual inductance is 4H. If current of 5A in the primary coil is cut off *i* 1/1500s, the emf at the terminals of the secondary coil will be a) 15 kV
 b) 60 kV
 c) 10 kV
 d) 30 Kv
- 6. The coil of choke in a circuit
 a) Increases the current
 b) Decreases the current
 c) De not change the current
 d) Has high resistance to dc circuit

- - a) 30 c/s or Hz b) 50 c/s or Hz c) 60 c/s or Hz d) 120 c/s or Hz
- 9. In the circuit shown in the figure, the ac source gives a voltage $V = 20\cos(2000t)$. Neglecting source resistance, the voltmeter and ammeter reading will be

10. An *LCR* series ac circuit is at resonance with 10 *V* each across *L*,*C* and *R*. If the resistance is halved, the respective voltage across *L*, *C* and *R* are

a) 10 V, 10 V and 5 V b) 10 V, 10 V and 10 V c) 20 V, 20 V and 5 V d) 20 V, 20 V and 10 V

11. The readings of ammeter and voltmeter in the following circuit are respectively

2.2A, 220V

a) 2*A*, 200V

b) 1.5*A*, 100V

c) 2.7*A*, 220V

d)

12. A rectangular loop with a sliding connector of length l = 1.0 m is situated in a uniform magnetic field B = 2T. Perpendicular to the plane of loop. Resistance of connector is $r = 2\Omega$. Two resistance of 6 Ω and 3 Ω are connected as shown in figure. The external force required to keep the connector moving with a constant velocity $v = 2 \text{ ms}^{-1}$ is

13. What is the *r.m.s.* value of an alternating current which when passed through a resistor produces heat which is thrice of that produced by a direct current of 2 amperes in the same resistor

	a) 6 <i>amp</i>	b) 2 <i>am</i>	D	(c) 3.46	б атр		d) ^{0.66} amp	
14.	A bulb is connected firs a) AC c) Brightness will be in	t with do	and the	n ac of s l	ame v 5) DC d) Equ	oltage it ally with	will shin both	e brightly with	
15.	If an alternating voltage and the frequency are r a) 141 V, 628 Hz	e is repre espectiv b) 100 V	sented a ely 7, 50 Hz	as $E = 14$	1sin(c) 100	(628 <i>t</i>), tl V, 100 H	hen the r Iz	ms value of the v d) 141 V, 100 H:	voltage z

16. Some magnetic flux is changed from a coil of resistance 110Ω . As a result, an induced current is developed in it, which varies with time as shown in figure. The magnitude of change in flux through the coil in weber is

- 17. Two coils *A* and *B* have 200 and 400 turns respectively. A current of 1 A in coil A causes a flux per turn of 10^{-3} Wb to link with *A* and a flux per turn of 0.8×10^{-3} Wb through B. The ratio of mutual inductance of *A* and *B* is
 - a) 0.625 b) 1.25 c) 1.5 d) 1.625
- 18. 220 V, 50 Hz AC is applied to a resistor. The instantaneous value of voltage is

a) 220 $\sqrt{2}$ sin 100 πt	b) $220 \sin 100\pi t$	c) $220\sqrt{2}\sin 50\pi t$	d) $220 \sin 50\pi t$
	-	-	-

19. Two circuits have mutual inductance of 0.09 H. Average emf induced in the secondary by a change of current from 0 to 20 A in 0.006 s in primary will be

-1100 V	L) 200 V	-) 100 U	1) 000 (F
	DIZUU V	CI 180 V	01300 V
	~ / =	-,	

20. One 10 *V*, 60 *W* bulb is to be connected to 100 *V* line. The required induction coil has self inductance of value (*f* = 50 *Hz*)
a) 0.052 *H*b) 2.42 *H*c) 16.2 *mH*d) 1.62 *mH*

