Class : XIIth
Date :

Solutions

Subject : PHYSICS

DPP No. : 9

Topic :-Alternating current

1

2
(b)

Given, $\quad L=30 \mathrm{mH}$

$$
V_{r m s}=220 \mathrm{~V}
$$

$$
f=50 H z
$$

Now,

$$
\begin{aligned}
X_{L} & =\omega L=2 \pi f L \\
& =2 \times 3.14 \times 50 \times 30 \times 10^{-3} \\
& =9.42 \Omega
\end{aligned}
$$

The rms current in the coil is

$$
i_{r m s}=\frac{V_{r m s}}{X_{L}}=\frac{220 \mathrm{~V}}{9.42 \Omega}=23.4 \mathrm{~A}
$$

3
(c)
$P=V_{\text {r.m.s. }} \times i_{\text {r.m.s. }} \times \cos \phi=\frac{100}{\sqrt{2}} \times \frac{100 \times 10^{-3}}{\sqrt{2}} \times \cos \frac{\pi}{3}$
$=\frac{10^{4} \times 10^{-3}}{2} \times \frac{1}{2}=\frac{10}{4}=2.5 \mathrm{watt}$
(d)

Initial flux linked with inner coil when $i=0$ is zero. Final flux linked with inner coil when $i=i$ is $\left(\frac{\mu_{0} i}{2 \pi b}\right) \pi a^{2}$
$\therefore \quad$ Change in flux, $d \phi=\left(\frac{\mu_{0} i}{2 \pi b}\right) \pi a^{2}$
As $d q=\frac{d \phi}{R}$
\therefore Total charge circulating the inner coil is

$$
=\left(\frac{\mu_{0} i}{2 \pi b}\right) \frac{\pi a^{2}}{R}=\frac{\mu_{0} i a^{2}}{2 R b}
$$

Terminal velocity of the rod is attained when magnetic force on the rod (Bil) balances the component of weight of the $\operatorname{rod}(m g \sin \theta)$, figure.

ie , $\quad B i l=m g \sin \theta$
$B\left(\frac{e}{R}\right) l=m g \sin \theta$

$$
\begin{gathered}
\frac{B l}{R}(e)=m g \sin \theta \\
\frac{B l}{R}\left(B l v_{r}\right)=\mathrm{mg} \sin \theta \\
r_{T}=\frac{\mathrm{mg} R \sin \theta}{B^{2} l^{2}}
\end{gathered}
$$

8
(a)
$X_{C}=\frac{1}{2 \pi v C} \Rightarrow C=\frac{1}{2 \pi v X_{C}}=\frac{1}{2 \times \pi \times \frac{400}{\pi} \times 25}=50 \mu F$
(c)

Here, $M=2 \mathrm{H}, d \phi=4 \mathrm{~Wb}, d t=10 \mathrm{~s}$
As $\quad \phi=M i$
$d \phi=M d i$
Or $\quad d i=\frac{d \phi}{M}=\frac{4}{2}=2 \mathrm{~A}$
Also, $d \phi=M(d i)=2(1)$
$=2 \mathrm{~Wb}$
(a)
$\tan \phi=\frac{X_{L}}{R}=\frac{\sqrt{3} R}{R}=\sqrt{3} \Rightarrow \phi=60^{\circ}=\pi / 3$
(c)

Time difference $=\frac{T}{2 \pi} \times \phi=\frac{(1 / 50)}{2 \pi} \times \frac{\pi}{4}=\frac{1}{400} s=2.5 \mathrm{~m}-\mathrm{s}$
(a)

Here, Resistance, $R=3 \Omega$
Inductive reactance, $X_{L}=10 \Omega$
Capacitive reactance, $X_{C}=14 \Omega$
The impedance of the series $L C R$ circuit is
$Z=\sqrt{R^{2}+\left(X_{C}+X_{L}\right)^{2}}=\sqrt{(3)^{2}+(14-10)^{2}}$
$Z=5 \Omega$
(d)

In purely inductive circuit voltage leads the current by 90°
(a)
Q factor is given by $\frac{1}{R} \sqrt{\frac{L}{C}}$
So, for large quality factor the inductance should be large and resistance and capacitance must be small
(b)

$$
\begin{aligned}
\text { As, power factor } & =\frac{\text { true power }}{\text { apparent power }} \\
& =\cos \phi \\
& =\frac{R}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}
\end{aligned}
$$

$\therefore \quad$ power factor $=\cos \phi=\frac{R}{Z}$
In a non-inductive circuit, $X_{L}=X_{C}$

$$
\begin{array}{ll}
\therefore & \text { Power factor }=\cos \phi=\frac{R}{\sqrt{R^{2}}}=\frac{R}{R}=1 \\
\therefore & \phi=0^{\circ}
\end{array}
$$

This is the maximum value of power factor. In a pure inductor or an ideal capacitor

$$
\phi=90^{\circ}
$$

$\therefore \quad$ Power factor $=\cos \phi=\cos 90^{\circ}=0$
Average power consumed in a pure inductor or ideal capacitor
$P=E_{v} \cdot I_{v} \cos 90^{\circ}=$ zero
Therefore, current through pure L or pure C, which consumes no power for its maintenance in the circuit is called ideal current or wattles current.
(d)

Potential difference across the capacitor $=$ emf induced across $H E=B l v$ which is constant. Therefore, charge stored in the capacitor is constant. Hence current in the circuit $H K D E$ is zero.
(b)
$e=-L d I / d t=-5 \times(-2)=+10 \mathrm{~V}$
(b)

Resistance of a bulb $=\frac{(\text { Rated voltage })^{2}}{\text { Rated power }}$
$=\frac{(220)^{2}}{100}=484 \Omega$
Peak voltage of the source, $V_{0}=220 \sqrt{2} V=311 \mathrm{~V}$
(a)

As $M=\frac{\mu_{0} N_{1} N_{2} A}{l}$, therefore, M becomes 4 times

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	D	B	C	D	A	C	C	A	A	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	C	A	D	A	B	D	B	B	A			

