Class : XIIth

Subject : PHYSICS
Date :
DPP No. :8

Topic :-Alternating Current

1. The resistance of a coil for dc is in ohms. In ac, the resistance
a) Will remain same
b) Will increase
c) Will decrease
d) Will be zero
2. The current i in the circuit shown here varies with time t is

a)

b)

c)

d)

3. A circuit has a resistance of 11Ω, an inductive reactance of 25Ω and a capacitative resistance of 18Ω. It is connected to an ac source of 260 V and 50 Hz . The current through the circuit (in amperes) is
a) 11
b) 15
c) 18
d) 20
4. The reading of ammeter in the circuit shown will be

a) 2 A
b) 2.4 A
c) Zero
d) 1.7 A
5. A step-up transformer is used on a 120 V line to provide a potential difference of 2400 V . If the primary coil has 75 turns, the number of turns in the secondary coil is
a) 150
b) 1200
c) 1500
d) 1575
6. A coil of inductance 300 mH and resistance 2Ω is connected to a source of voltage 2 V . The current reaches half of its steady state value in
a) 0.05 s
b) 0.1 s
c) 0.15 s
d) 0.3 s
7. An alternating e.m.f. of angular frequency ω is applied across an inductance. The instantaneous power developed in the circuit has an angular frequency
a) $\omega / 4$
b) $\omega / 2$
c) ω
d) ${ }^{2 \omega}$
8. A 10 ohm resistance, 5 mH coil and $10 \mu F$ capacitor are joined in series. When a suitable frequency alternating current source is joined to this combination, the circuit resonates. If the resistance is halved, the resonance frequency
a) Is halved
b) Is doubled
c) Remains unchanged
d) In quadrupled
9. There is a 5Ω resistance in an ac, circuit. Inductance of $0.1 H$ is connected with it in series. If equation of ac e.m.f. is $5 \sin 50 t$, then the phase difference between current and e.m.f. is
a) $\frac{\pi}{2}$
b) $\frac{\pi}{6}$
c) $\frac{\pi}{4}$
d) 0
10. In the alternating current shown in the figure, the currents through inductor and capacitor are 1.2 amp and 1.0 amp respectively. The current drawn from the generator is

a) 0.4 amp
b) 0.2 amp
c) 1.0 amp
d) 1.2 amp
11. In a region of uniform magnetic induction $B=10^{-2}$ tesla, a circular coil of radius 30 cm and resistance π^{2} ohm is rotated about an axis which is perpendicular to the direction of B and which forms a diameter of the coil. If the rotates at 200 rpm the amplitude of the alternating current induced in the coil is
a) $4 \pi^{2} \mathrm{~mA}$
b) 30 mA
c) 6 mA
d) 200 mA
12. In an $L-C-R$ circuit, capacitance is changed from C to $2 C$. For the resonant frequency to remain unchanged, the inductance should be changed from L to
a) $4 L$
b) $2 L$
c) $L / 2$
d) ${ }^{L / 4}$
13. A bulb and a capacitor are in series with an ac source. On increasing frequency how will glow of the bulb change
a) The glow decreases
b) The glow increases
c) The glow remain the same
d) The bulb quenches
14. An alternating voltage is represented as $E=20 \sin 300 t$. The average value of voltage over one cycle will be
a) Zero
b) 10 volt
c) $20 \sqrt{2}$ volt
d) $\frac{20}{\sqrt{2}}$ volt
15. The magnet in figure rotates a shown on a pivot through its center. At the instant shown, what are the directions of the induced currents.

a) A to B and C to D
b) B to A and C to D
c) A to B and D to C
d) B to A and D to C
16. A magnet is suspended lengthwise from a spring and while it oscillates, the magnet moves in and out of the coil C connected to a galvanometer G . Then as the magnet oscillates.
a) G shows no deflection
b) G shows deflection on one side
c) Deflection of G to the left and right has
d) Deflection of G to the left and right has decreasing amplitude
17. Current growth in two $L-R$ circuits (ii) and (iii) is as shown in figure (i). Let L_{1}, L_{2}, R_{1} and R_{2} be the corresponding values in two circuits. Then

a) $L_{1}>L_{2}$
b) $L_{1}<L_{2}$
c) $R_{1}>R_{2}$
d) $R_{1}=R_{2}$
18. An electric heater rated 220 V and 550 W is connected to A.C. mains. The current drawn by it is
a) 0.8 A
b) 2.5 A
c) 0.4 A
d) 1.25 A
19. A resistor and a capacitor are connected in series with an AC source. If the potential drop across the capacitor is 5 V and that across resistor is 12 V , then applied voltage is
a) 13 V
b) 17 V
c) 5 V
d) 12 V
20. An inductor of 2 H and a resistance of 10Ω are connected in series with a battery of 5 V . the initial rate of change of current is
a) $0.5 \mathrm{As}^{-1}$
b) $2.0 \mathrm{As}^{-1}$
c) $2.5 \mathrm{As}^{-1}$
d) $0.25 \mathrm{As}^{-1}$
