

7. An alternating *e*.m.f. of angular frequency ω is applied across an inductance. The instantaneous power developed in the circuit has an angular frequency

a)
$$\omega/4$$
 b) $\omega/2$ c) ω d) $\omega/2$

8. A 10 *ohm* resistance, 5 *mH* coil and 10 μ *F* capacitor are joined in series. When a suitable frequency alternating current source is joined to this combination, the circuit resonates. If the resistance is halved, the resonance frequency

```
a) Is halved b) Is doubled c) Remains unchanged d) In quadrupled
```

9. There is a 5 Ω resistance in an ac, circuit. Inductance of 0.1*H* is connected with it in series. If equation of ac *e*.m.f. is 5sin 50*t*, then the phase difference between current and *e*.m.f. is

a)
$$\frac{\pi}{2}$$
 b) $\frac{\pi}{6}$ c) $\frac{\pi}{4}$ d)0

10. In the alternating current shown in the figure, the currents through inductor and capacitor are 1.2 *amp* and 1.0 *amp* respectively. The current drawn from the generator is

11. In a region of uniform magnetic induction $B = 10^{-2} tesla$, a circular coil of radius 30 cm and resistance π^2 ohm is rotated about an axis which is perpendicular to the direction of B and which forms a diameter of the coil. If the rotates at 200 rpm the amplitude of the alternating current induced in the coil is

2			200 mA
a) $4\pi^2 mA$	b) 30 <i>mA</i>	c) 6 <i>mA</i>	d) 1 00 mm

12. In an L - C - R circuit, capacitance is changed from C to 2C. For the resonant frequency to remain unchanged, the inductance should be changed from L to a) 4L b) 2L c) L/2 d) L/4

13. A bulb and a capacitor are in series with an ac source. On increasing frequency how will glow of the bulb change

a) The glow decreases	b) The glow increases
c) The glow remain the same	d) The bulb quenches

14. An alternating voltage is represented as $E = 20 \sin 300t$. The average value of voltage over one cycle will be

a) Zero

b) 10 volt c) $20\sqrt{2}$ volt d) $\frac{20}{\sqrt{2}}$ volt

15. The magnet in figure rotates a shown on a pivot through its center. At the instant shown, what are the directions of the induced currents.

 $a_j A = b_j a_{11} a_{12} a_{13} a_{14} a_{15} a_$

c) A to B and D to C

b) B to A and C to D

- d) *B* to *A* and *D* to *C*
- 16. A magnet is suspended lengthwise from a spring and while it oscillates, the magnet moves in and out of the coil C connected to a galvanometer G. Then as the magnet oscillates.
 - a) G shows no deflection
 - c) Deflection of G to the left and right has constant amplitude
- b) G shows deflection on one side
- d) Deflection of G to the left and right has decreasing amplitude
- 17. Current growth in two L R circuits (ii) and (iii) is as shown in figure (i). Let L_1 , L_2 , R_1 and R_2 be the corresponding values in two circuits. Then

- 18. An electric heater rated 220 V and 550 W is connected to A.C. mains. The current drawn by it is
 - a) 0.8 A b) 2.5 A c) 0.4 A d) 1.25 A
- 19. A resistor and a capacitor are connected in series with an AC source. If the potential drop across the capacitor is 5 V and that across resistor is 12 V, then applied voltage is

a) 13 V b) 17 V c) 5 V d) 12 V

20. An inductor of 2 H and a resistance of 10 Ω are connected in series with a battery of 5 V. the

initial rate of change of	current is		
a) 0.5 As ⁻¹	b) 2.0 As ⁻¹	c) 2.5 As ⁻¹	d) 0.25 As ⁻¹