Class : XIIth
Date :

Solutions

Subject : PHYSICS

DPP No. : 7

Topic :-Alternating current

1

2

3

4
(c)

Power remains constant in a ideal step down transformer.
(b)
$V=50 \times 2 \sin 100 \pi t \cos 100 \pi t=50 \sin 200 \pi t$
$\Rightarrow V_{0}=50$ volts and $v=100 \mathrm{~Hz}$
(b)

Capacitive reactance is given by

$$
X_{C}=\frac{1}{\omega C}
$$

Where C is capacitance and ω the angular frequency ($\omega=2 \pi f$).

$$
\begin{array}{ll}
\therefore & X_{C}=\frac{1}{2 \pi f C} \\
\Rightarrow & X_{C} \propto \frac{1}{f}
\end{array}
$$

Hence, when frequency f increases capacitive reactance decreases.
(a)

Power factor $=\cos \phi=\frac{R}{Z}$

$$
=\frac{12}{15}=\frac{4}{5}=0.8
$$

5
(d)

Given $\omega L=\frac{1}{\omega C} \Rightarrow \omega^{2}=\frac{1}{L C}$
Or $\omega=\frac{1}{\sqrt{10^{-3} \times 10 \times 10^{-6}}}=\frac{1}{\sqrt{10^{-8}}}=10^{4}$
$X_{L}=\omega L=10^{4} \times 10^{-3}=10 \Omega$
6
(b)
$i_{s}=\frac{E_{s}}{Z}=\frac{22}{220}=0.1 \mathrm{~A}$
(a)

The instantaneous value of voltage is
$E=100 \sin (100 t) V$
Compare it with $E=E_{0} \sin (\omega t) V$
We get
$E_{0}=100 \mathrm{~V}, \omega=100 \mathrm{rads}^{-1}$
The rms value of voltage is
$E_{r m s}=\frac{E_{0}}{\sqrt{2}}=\frac{100}{\sqrt{2}} \mathrm{~V}=70.7 \mathrm{~V}$
The instantaneous value of current is
$I=100 \sin \left(100 t+\frac{\pi}{3}\right) m A$
Compare it with
$I=I_{0} \sin (\omega t+\phi)$
We get
$I_{0}=100 \mathrm{~mA}, \omega=100 \mathrm{rads}^{-1}$
The rms value of current is

$$
I_{r m s}=\frac{I_{0}}{\sqrt{2}}=\frac{100}{\sqrt{2}} m A=70.7 \mathrm{~mA}
$$

(a)

Resistance , $R=\frac{100}{10}=10 \Omega$
Inductive reactance , $X_{L}=2 \pi f L$
$\frac{100}{8}=2 \pi \times 50 \times L$
$\Rightarrow L=\frac{1}{8 \pi} \mathrm{H}$
$X_{L}^{\prime}=2 \pi f^{\prime} L=2 \pi \times 40 \times \frac{1}{8 \pi}=10 \Omega$
Impedance of the circuit is $Z=\sqrt{R^{2}+X_{L}^{\prime}}{ }^{2}$
$=\sqrt{(10)^{2}+(10)^{2}}$
$=10 \sqrt{2} \Omega$
Current in the circuit is $i=\frac{V}{Z}=\frac{150}{10 \sqrt{2}}=\frac{15}{\sqrt{2}} \mathrm{~A}$
(a)
$\because\left(X_{C}\right) \gg\left(X_{L}\right)$
(a)
$i_{r m s}=\frac{200}{280}=\frac{5}{7} A$. So $i_{0}=i_{r m s} \times \sqrt{2}=\frac{5}{7} \times \sqrt{2} \approx 1 A$
(d)

In series $L-R$ circuit, impedance is given by

$$
Z=\sqrt{R^{2}+X_{L}^{2}}
$$

Where R is the resistance and X_{L} the inductive reactance.

$$
\left.\begin{array}{ll}
\text { Given, } & R
\end{array}=8 \Omega, X_{L}=6 \Omega ~ 子=\sqrt{(8)^{2}+(6)^{2}}\right)
$$

(a)

If the current is wattles then power is zero. Hence phase difference $\phi=90^{\circ}$
(a)

In $L C R$ circuit; in the condition of resonance $X_{L}=X_{C}$, i.e., circuit behaves as resistive circuit. In resistive circuit power factor is maximum
(c)

$$
\begin{aligned}
& I_{a v}=\frac{\int_{0}^{T / 2} i d t}{\int_{0}^{T / 2} d t}=\frac{\int_{0}^{T / 2} I_{0} \sin (\omega t) d t}{T / 2} \\
& =\frac{2 I_{0}}{T}\left[\frac{-\cos \omega t}{\omega}\right]_{0}^{T / 2}=\frac{2 I_{0}}{T}\left[-\frac{\cos \left(\frac{\omega T}{2}\right)}{\omega}+\frac{\cos 0^{\circ}}{\omega}\right] \\
& =\frac{2 I_{0}}{\omega T}\left[-\cos \pi+\cos 0^{\circ}\right]=\frac{2 I_{0}}{2 \pi}[1+1]=\frac{2 I_{0}}{\pi}
\end{aligned}
$$

(c)

At resonance, $\omega L=\frac{1}{\omega C}$
Current flowing through the circuit,

$$
\begin{aligned}
I & =\frac{V_{R}}{R} \\
& =\frac{100}{1000}=0.1 \mathrm{~A}
\end{aligned}
$$

So, voltage across L is given by

$$
\text { But } \quad \omega L=\frac{1}{\omega C}
$$

$$
\therefore \quad V_{L}=\frac{1}{\omega C}
$$

$$
\begin{aligned}
V_{L} & =I X_{L}=I \omega L \\
\omega L & =\frac{1}{\omega C} \\
V_{L} & =\frac{1}{\omega C} \\
& =\frac{0.1}{200 \times 2 \times 10^{-6}}=250 \mathrm{~V}
\end{aligned}
$$

(b)

When the direction of current is reversed, moving from B to A.

$$
V_{B}-V_{A}=\left[5 \times 10^{-3}\left(-10^{3}\right)+15+1 \times 5\right]
$$

$$
=15 \text { volt }
$$

(b)

The instantaneous voltage through the given device

$$
e=80 \sin 100 \pi t
$$

Comparing the given instantaneous voltage with standard instantaneous voltage $e=e_{0} \sin \omega t$.
We get $\quad e_{0}=80 \mathrm{~V}$
Where e_{0} is the peak value of voltage
Impedance (Z) $=20 \Omega$
Peak value of current $I_{0}=\frac{e_{0}}{Z}$

$$
=\frac{80}{20}=4 \mathrm{~A}
$$

Effective value of current (root mean square value of current).

$$
\begin{aligned}
I_{r m s}= & \frac{I_{0}}{\sqrt{2}} \\
& =\frac{4}{\sqrt{2}}=2 \sqrt{2}=2.828 \mathrm{~A}
\end{aligned}
$$

(b)

Charging current, $I=\frac{E}{R} e^{-\frac{t}{R C}}$
Taking log both sides,

$$
\log I=\log \left(\frac{E}{R}\right)-\frac{t}{R C}
$$

When R is doubled, slope of curve increases. Also at $t=0$, the current will be less. Graph Q represents the best.

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	C	B	B	A	D	B	A	A	A	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	D	C	A	A	C	C	B	B	B		

