Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 6

Topic :-Alternating current

2
(c)

As $e=M \frac{d i}{d t}$
$\therefore 30 \times 10^{3}=3 \times \frac{10}{d t}$,
$d=\frac{30}{30 \times 10^{3}}=10^{-3} \mathrm{~s}$
(b)

Wheatstone bridge is balanced. Current through $A C$ is zero. Effective resistance R of bridge is

$$
\frac{1}{R}=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}, R=3 \Omega
$$

Total resistance $=1+3=4 \Omega$
Induced emf
$e=i R=B l v$

$$
\begin{aligned}
& \therefore v=\frac{i R}{B l}=\frac{1 \times 10^{-3} \times 4}{2 \times 0.1} \\
& =2 \times 10^{-2} \mathrm{~ms}^{-1}
\end{aligned}
$$

(b)

Motional emf across $P Q$
$V=B l v=4(1)(2)=8$ volt
This is the potential to which the capacitor is charged.
As $q=C V$
$\therefore q=\left(10 \times 10^{-6}\right) 8=10^{-5} C=80 \mu C$
As magnetic force on electron in the conducting rod $P Q$ is towards Q, therefore, A is positively charged and B is negatively charged
$i e, q_{A}=+80 \mu C$ and $q_{B}=-80 \mu C$

5 (c)
The DC generator must be mixed wound to with stand the load variation.

6
(a)

For imparting max power
$X_{L}=X_{C} \Rightarrow \omega L=\frac{1}{\omega C}$
$C=\frac{1}{\omega^{2} L}=\frac{1}{(2 \pi f)^{2} \times L}=\frac{1}{(100 \pi)^{2} \times 10}=1 \times 10^{-6}=1 \mu F$

8
(c)
$Z=\sqrt{R^{2}+\left(\frac{1}{2 \pi v C}\right)^{2}}=\sqrt{(3000)^{2}+\frac{1}{\left(2 \pi \times 50 \times \frac{2.5}{\pi} \times 10^{-6}\right)^{2}}}$
$\Rightarrow Z=\sqrt{(3000)^{2}+(4000)^{2}}=5 \times 10^{3} \Omega$
So power factor $\cos \phi=\frac{R}{Z}=\frac{3000}{5 \times 10^{3}}=0.6$ and power
$P=V_{r m s} i_{r m s} \cos \phi=\frac{V_{r m s}^{2} \cos \phi}{Z} \Rightarrow P=\frac{(200)^{2} \times 0.6}{5 \times 10^{3}}=4.8 \mathrm{~W}$
(b)

As $e=M d I / d t$,
$\therefore \quad M=\frac{e d t}{d l}=-\frac{15000 \times 0.001}{3}=5 \mathrm{H}$
(d)

Rise of current in $L-R$ circuit is given by

$I=I_{0}\left(1-e^{-t / \tau}\right)$
Where, $I_{0}=\frac{E}{R}=\frac{5}{5}=1 \mathrm{~A}$
Now, $\quad \tau=\frac{L}{R}=\frac{10}{5}=2 \mathrm{~s}$
After $2 \mathrm{~s}, i e$, at $t=2 \mathrm{~s}$
Rise of current $I=\left(1-e^{-1}\right) \mathrm{A}$
(b)

At resonance, $L C R$ circuit behaves as purely resistive circuit. For purely resistive circuit power factor $=1$
(a)

Voltage across the capacitors will increase from 0 to 10 V exponentially. The voltage at time t will be given by

$$
V=10\left(1-e^{-t / \tau_{c}}\right)
$$

Here $\tau_{C}=C_{\text {net }} R_{\text {net }}=\left(1 \times 10^{6}\right)\left(4 \times 10^{-6}\right)=4 \mathrm{~s}$
$\therefore V=10\left(1-e^{-t / 4}\right)$
Substituting $V=4$ volt, we have,

$$
\begin{aligned}
& 4=10\left(1-e^{-t / 4}\right) \\
& e^{-t / 4}=0.6=\frac{3}{5}
\end{aligned}
$$

Taking log both sides we have,

$$
\begin{aligned}
& -\frac{t}{4}=\operatorname{In} 3-\operatorname{In} 5 \\
& t=4(\operatorname{In} 5-\operatorname{In} 3)=2 \mathrm{~s} .
\end{aligned}
$$

or
(c)

From $L=\frac{\mu_{0} N^{2} A}{l}=\frac{\mu_{0} \mu_{r} N^{2} A}{l}$,
When $\mu=1000$ and N becomes $\frac{1}{10}$
$\therefore \quad L$ becomes $1000 \times\left(\frac{1}{10}\right)^{2}=10$ times
ie, $L=10 \times 0.1=1 \mathrm{H}$
(b)

From $R=\frac{E-V}{i}$
$0.5=\frac{120-V}{8}$
$V=116 \mathrm{~V}$

(b)

In non resonant circuits
 circuit behaves as capacitive circuit
(c)

Phase difference in $R-L$ circuit,

$$
\begin{aligned}
& & \phi & =\tan ^{-1} \frac{X_{L}}{R} \\
& \text { or } & \tan 45^{\circ} & =\frac{X_{L}}{R} \\
& \text { or } & X_{L} & =R
\end{aligned}
$$

(d)

At resonant frequency current in series $L C R$ circuit is maximum
(d)

Magnetic field at the centre of primary coil $B=\mu_{0} i_{1} / 2 R_{1}$. Considering it to be uniform,
magnetic flux passing through secondary coil is
$\phi=B A=\frac{\mu_{0} i_{1}}{2 R_{1}}\left(\pi R_{2}^{2}\right)$
Now, $M=\frac{\phi_{2}}{i_{1}}=\frac{\mu_{0} \pi R_{2}^{2}}{2 R_{1}}$
$\therefore M \propto \frac{R_{2}^{2}}{R_{1}}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	C	B	B	C	A	D	C	C	D			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	B	A	C	B	C	B	C	D	D			

