Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 5

Topic :-Alternating current

1

2
(d)
$i=\frac{220}{\sqrt{(20)^{2}+(2 \times \pi \times 50 \times 0.2)^{2}}}=\frac{220}{66}=3.33 \mathrm{~A}$
(a)
$E_{s}=\frac{n_{s}}{n_{P}} E_{P}=\frac{4200}{2100} \times 120=240 \mathrm{~V}$
$i_{s}=\frac{n_{s}}{n_{P}} i_{P}=\frac{2100}{4200} \times 10=5 \mathrm{~A}$

7
(b)
$i_{\text {r.m.s. }}=\frac{i_{0}}{\sqrt{2}}=\frac{4}{\sqrt{2}}=2 \sqrt{2}$ ampere
(a)

As the current i leads the emf e by $\frac{\pi}{4}$, it is an $R-C$ circuit

		$\tan \phi$	$=\frac{X_{C}}{R}$
	or	$\tan \frac{\pi}{4}$	$=\frac{1}{\omega C}$
	\therefore	$\omega C R$	$=1$
	As	ω	$=100 \mathrm{rads}^{-1}$

The product of $C-R$ should be $\frac{1}{100} \mathrm{~s}^{-1}$.
5 (d)
Phase angle $\phi=90^{\circ}$, so power $P=$ Vicos $\phi=0$
6 (d)
Current lags the voltage if $\omega L>\frac{1}{\omega C}$
$f>\frac{1}{2 \pi \sqrt{L C}} \Rightarrow f>f_{r}$
(c)
$v=\frac{\omega}{2 \pi}=\frac{120 \times 7}{2 \times 22}=19 \mathrm{~Hz}$
$V_{r . m . s}=\frac{240}{\sqrt{2}}=120 \sqrt{2}=170 \mathrm{~V}$
(c)

For an $R-C$ circuit
Applied voltage, $V=\sqrt{V_{R}^{2}+V_{C}^{2}}$

$$
\begin{array}{cc}
\therefore & 50=\sqrt{(40)^{2}+V_{C}^{2}} \\
\Rightarrow & V_{C}=30 \mathrm{~V}
\end{array}
$$

(d)

Power factor

$$
\begin{aligned}
\cos \phi & =\frac{R}{\sqrt{R^{2}+\omega^{2} L^{2}}} \\
& =\frac{30}{\sqrt{(30)^{2}+(100)^{2} \times\left(400 \times 10^{-3}\right)^{2}}} \\
& =\frac{30}{\sqrt{900+1600}}=\frac{30}{50}=0.6
\end{aligned}
$$

(a)

Yes, in $A C$ if branch $A B$ has $R, B C$ has a capacitor C, and $B D$ has a pure inductance L

(c)

At $A: X_{C}>X_{L}$
At $B: X_{C}=X_{L}$
At $C: X_{C}<X_{L}$
(c)

Here: Current in the circuit
(i) $=15 \mathrm{~mA}=15 \times 10^{-3} \mathrm{~A}$

Resistance $R=4000$ Volt
Applied voltage in the circuit $=240 \mathrm{~V}$
At any instant, the emf of the battery is equal to the sum of potential drop on the resistor and the emf developed in the induction coil
Hence, $E=i R+L \frac{d i}{d t}$
$240=15 \times 10^{-3} \times 4000+L \frac{d i}{d t}$
Hence, $L \frac{d i}{d t}=240-60=180 \mathrm{~V}$
(b)
L / R represents time constant of R-L circuit. Therefore, its dimensions are $\left[M^{0} L^{0} T^{1}\right]$.
(a)

This is a parallel circuit, For oscillation, the energy in L and C will be alternately maximum
(a)

The current in a coil is given by

$$
i=i_{0} e^{-t / \tau}
$$

Now, $i=\frac{i_{0}}{\eta}$ in $t=t_{0}$

$$
\therefore \quad \frac{i_{0}}{\eta}=i_{0} e^{-t_{0} / \tau}
$$

$$
e^{-t_{0} / \tau}=\eta^{-1}
$$

Taking log of both sides,

$$
\begin{aligned}
& -\frac{t_{0}}{\tau} \log _{e} e=-1 \log _{e} \eta \\
& \frac{t_{0}}{\tau}=\log _{e} \eta \\
& \tau=t_{0} / \log _{e} \eta=t_{0} / \operatorname{In} \eta
\end{aligned}
$$

(b)

Since voltage is lagging behind the current, so there must be no inductor in the box
(b)

Average power dissipated in an AC circuit

$$
\begin{equation*}
P_{a v}=V_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi \tag{i}
\end{equation*}
$$

Where the term $\cos \phi$ is known as power factor.
Given, $V_{\text {rms }}=100 \mathrm{~V}, R=100 \Omega, \phi=30^{\circ}$

$$
\therefore \quad I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{R}=\frac{100}{100}=1 \mathrm{~A}
$$

Putting the values in Eq. (i), we get

$$
\begin{aligned}
P_{a v} & =100 \times 1 \times \cos 30^{\circ} \\
& =100 \frac{\sqrt{3}}{2} \\
& =50 \sqrt{3}=86.6 \mathrm{~W}
\end{aligned}
$$

(c)

$$
\tan \phi=\frac{\omega L-\frac{1}{\omega C}}{R}
$$

ϕ being the angle by which the current leads the voltage.
Given, $\phi=45^{\circ}$

$$
\begin{aligned}
\therefore & \tan 45^{\circ}=\frac{\omega L-\frac{1}{\omega C}}{R} \\
\Rightarrow & 1=\frac{\omega L-\frac{1}{\omega C}}{R} \\
\Rightarrow & R=\omega L-\frac{1}{\omega C} \\
\Rightarrow & C=\frac{1}{\omega(\omega L-R)} \\
& =\frac{1}{2 \pi f(2 \pi f L-R)}
\end{aligned}
$$

(d)

In an $L-C-R$ circuit in resonance condition

$$
X_{L}=X_{C} \quad \text { or } \quad X_{C}-X_{L}=0
$$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	A	B	A	D	D	C	C	D	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	C	B	A	A	B	B	C	C	D		

