Class : XIIth Date : Solutions

ACTICE PROBLE

Subject : PHYSICS DPP No. : 4

Topic :-Alternating current

1 **(b)**

From $e = LdI/dt \Rightarrow dI = \frac{e}{L} = \frac{1}{1} = 1 \text{ As}^{-1}$

2

After time t, thickness of liquid will remain $(\frac{d}{3} - vt)$. Now, time constant as function of time

$$\tau_c = CR$$

(d)

(c)

(c)

(a)

$$= \frac{\varepsilon_0(1).R}{\left(d - \frac{d}{3} + vt\right) + \frac{d/3 - vt}{2}} \left(\text{Applying } C = \frac{\varepsilon_0 A}{d - t + \frac{t}{k}}\right)$$
$$= \frac{6\varepsilon_0 R}{5d + 3vt}$$

3

When wire is thick, its resistance reduces. Therefore, Joules' heating loss is reduced.

4

Peak value = $220\sqrt{2} = 311 V$

5

 I_L lags behind I_R by a phase of $\frac{\pi}{2}$, while I_C leads by a phase of $\frac{\pi}{2}$

6 **(b)**

Time constant of R – C circuit is $\tau = RC$ Here effective resistance of the circuit

$$=\frac{2R \times 3R}{2R + 3R} = \frac{6R}{5}$$

$$\therefore \qquad \tau = \frac{6R}{5} \times C = \frac{6RC}{5}$$

(b)

7

$$e = \frac{Mdi}{dt} = \left(\frac{\mu_0 N_1 N_2 A}{l}\right) \frac{di}{dt}$$

= $\frac{4\pi \times 10^{-7} \times 2000 \times 300 \times 1.2 \times 10^{-3}(4)}{0.3 \times 0.25}$
= $4.8 \times 10^{-2} \text{ V}$
(a)
 $V = 5\cos \omega t = 5\sin \left(\omega t + \frac{\pi}{2}\right) \text{ and } i = 2\sin \omega t$
Power = $V_{r.m.s.} \times i_{r.m.s.} \times \cos \phi = 0$
[Since $\phi = \frac{\pi}{2}$, therefore $\cos \phi = \cos \frac{\pi}{2} = 0$]

8

(d)

$$i = \frac{V}{Z} = \frac{4}{\sqrt{4^2 + (1000 \times 3 \times 10^{-3})^2}} = 0.8 A$$

10

(a) $X_L = 31\Omega, X_C = 25\Omega, R = 8\Omega$ Impedance of series *LCR* is

$$Z = \sqrt{(R)^2 + (X_L - X_C)^2}$$

= $\sqrt{(8)^2 + (31 - 25)^2} = \sqrt{64 + 36} = 10\Omega$
Power factor, $\cos \phi = \frac{R}{Z} = \frac{8}{10} = 0.8$
(d)

$$B = \frac{\phi}{A} = \frac{\mu_0 N_1 A i}{LA} = \frac{\mu_0 N^2 i}{L}$$

12

(c)

(a)

$$P = E_{rms}i_{rms}\cos\phi = \frac{E_0}{\sqrt{2}} \times \frac{i_0}{\sqrt{2}} \times \frac{R}{Z}$$
$$\Rightarrow \frac{E_0}{\sqrt{2}} \times \frac{E_0}{Z\sqrt{2}} \times \frac{R}{Z} \Rightarrow P = \frac{E_0^2 R}{2Z^2}$$
Given $X_L = R$ so, $Z = \sqrt{2}R \Rightarrow P = \frac{E_0^2}{4R}$

13

Since, current lags behind the voltage in phase by a constant angle, then circuit must contain *R* and *L*.

We find that in *R* – *L* circuit, voltage leads the current by a phase angle ϕ , where

14 **(d)**

Current will be max at first time when $100\pi t + \pi/3 = \pi/2 \Rightarrow 100 \pi t = \pi/6 \Rightarrow t = 1/600 s$

15 **(d)**

The current will lag behind the voltage when reactance of inductance is more than the reactance of condenser.

Thus, $\omega L > \frac{1}{\omega C}$ or $\omega > \frac{1}{\sqrt{LC}}$ or $n > \frac{1}{2\pi\sqrt{LC}}$ or $n > n_r$ where n_r = resonant frequency (b)

$$e = L \frac{dI}{dt} L = \frac{edt}{dI} = \frac{8(0.05)}{(4-2)} = 0.2 \text{ H}$$

(c)

16

In L - R circuit, current at any time t is given by $i = \frac{E}{R} \left(1 - e^{-\frac{R}{L}t}\right) = \frac{E}{R} - \frac{E}{R}e^{-\frac{R}{L}t}$ $\frac{di}{dt} = \frac{E}{R}e^{-\frac{R}{L}t}\left(\frac{R}{L}\right) = \frac{E}{L}e^{-\frac{R}{L}t}$ Induced emf $= L\frac{di}{dt} = Ee^{-\frac{R}{L}t}$ From Eq. (i), $iR = E - Ee^{-\frac{R}{L}t}$ Using Eq. (ii), iR = E - e or e = E - iRTherefore, graph between e and i is a straight line with negative slope and positive intercept. The choice (c) is correct.

18

(c)

$$U = \frac{1}{2} \frac{q^2}{C} = \frac{1}{2C} (q_0 e^{-t/\tau})^2 = \frac{q_0^2}{2C} e^{-2t/\tau} \text{ (where } \tau = CR)$$

$$U = U_{i^{e^{-2t/\tau}}}$$

$$\frac{1}{2}U_{i} = U_{i^{e^{-2t_{1}/\tau}}}$$

$$\frac{1}{2} = e^{-2t_{1}/\tau}$$

$$t_{1} = \frac{\tau}{2}\ln 2$$

$$q = q_{0^{e^{-t/\tau}}}$$

$$\frac{1}{2}q_{0} = q_{0^{e^{-t/\tau}}}$$

$$t_{2} = \tau \ln 4 = 2\tau \ln 2$$

$$\frac{t_{1}}{t_{2}} = \frac{1}{4}$$

19

20

 \Rightarrow

Now

:.

(a)

At resonance LCR series circuit behaves as pure resistive circuit. For resistive circuit $\phi=0^\circ$

(b) $Z = \sqrt{R^2 + X^2} = \sqrt{4^2 + 3^2} = 5$ $\therefore \cos \phi = \frac{R}{Z} = \frac{3}{5} = 0.6$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	А	D	C	С	В	В	А	D	А
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	С	А	D	D	В	C	С	A	В

