Class : XIIth
Date :
Solutions

Subject : PHYSICS
DPP No. : 4

Topic :-Alternating current

1
(b)

From $e=L d I / d t \Rightarrow d I=\frac{e}{L}=\frac{1}{1}=1 \mathrm{As}^{-1}$
(a)

After time t, thickness of liquid will remain $\left(\frac{d}{3}-v t\right)$.
Now, time constant as function of time

$$
\begin{aligned}
\tau_{c} & =C R \\
& =\frac{\varepsilon_{0}(1) \cdot R}{\left(d-\frac{d}{3}+v t\right)+\frac{d / 3-v t}{2}}\left(\text { Applying } C=\frac{\varepsilon_{0} A}{d-t+\frac{t}{k}}\right) \\
& =\frac{6 \varepsilon_{0} R}{5 d+3 v t}
\end{aligned}
$$

(d)

When wire is thick, its resistance reduces. Therefore, Joules' heating loss is reduced.
(c)

Peak value $=220 \sqrt{2}=311 \mathrm{~V}$
(c)
I_{L} lags behind I_{R} by a phase of $\frac{\pi}{2}$, while I_{C} leads by a phase of $\frac{\pi}{2}$
(b)

Time constant of $R-C$ circuit is $\tau=R C$
Here effective resistance of the circuit

$$
\begin{aligned}
& =\frac{2 R \times 3 R}{2 R+3 R}=\frac{6 R}{5} \\
\therefore \quad \tau & =\frac{6 R}{5} \times C=\frac{6 R C}{5}
\end{aligned}
$$

(b)

$$
\begin{aligned}
e & =\frac{M d i}{d t}=\left(\frac{\mu_{0} N_{1} N_{2} A}{l}\right) \frac{d i}{d t} \\
& =\frac{4 \pi \times 10^{-7} \times 2000 \times 300 \times 1.2 \times 10^{-3}(4)}{0.3 \times 0.25} \\
& =4.8 \times 10^{-2} \mathrm{~V}
\end{aligned}
$$

8
(a)
$V=5 \cos \omega t=5 \sin \left(\omega t+\frac{\pi}{2}\right)$ and $i=2 \sin \omega t$
Power $=V_{\text {r.m.s. }} \times i_{\text {r.m.s. }} \times \cos \phi=0$
[Since $\phi=\frac{\pi}{2}$, therefore $\cos \phi=\cos \frac{\pi}{2}=0$]

9
(d)
$i=\frac{V}{Z}=\frac{4}{\sqrt{4^{2}+\left(1000 \times 3 \times 10^{-3}\right)^{2}}}=0.8 \mathrm{~A}$
(a)
$X_{L}=31 \Omega, X_{C}=25 \Omega, R=8 \Omega$
Impedance of series $L C R$ is
$Z=\sqrt{(R)^{2}+\left(X_{L}-X_{C}\right)^{2}}$
$=\sqrt{(8)^{2}+(31-25)^{2}}=\sqrt{64+36}=10 \Omega$
Power factor, $\cos \phi=\frac{R}{Z}=\frac{8}{10}=0.8$
(d)
$B=\frac{\phi}{A}=\frac{\mu_{0} N_{1} A i}{L A}=\frac{\mu_{0} N^{2} i}{L}$
(c)
$P=E_{r m s} i_{r m s} \cos \phi=\frac{E_{0}}{\sqrt{2}} \times \frac{i_{0}}{\sqrt{2}} \times \frac{R}{Z}$
$\Rightarrow \frac{E_{0}}{\sqrt{2}} \times \frac{E_{0}}{Z \sqrt{2}} \times \frac{R}{Z} \Rightarrow P=\frac{E_{0}^{2} R}{2 Z^{2}}$
Given $X_{L}=R$ so, $Z=\sqrt{2} R \Rightarrow P=\frac{E_{0}^{2}}{4 R}$
(a)

Since, current lags behind the voltage in phase by a constant angle, then circuit must contain R and L.

We find that in $R-L$ circuit, voltage leads the current by a phase angle ϕ, where

$$
\begin{aligned}
\tan \phi & =\frac{A K}{O A}=\frac{O L}{O A} \\
& =\frac{V_{L}}{V_{R}}=\frac{I_{0} X_{L}}{I_{0} R} \\
\therefore & \tan \phi
\end{aligned}=\frac{X_{L}}{R}
$$

(d)

Current will be max at first time when

$$
100 \pi t+\pi / 3=\pi / 2 \Rightarrow 100 \pi t=\pi / 6 \Rightarrow t=1 / 600 s
$$

(d)

The current will lag behind the voltage when reactance of inductance is more than the reactance of condenser.
Thus, $\omega L>\frac{1}{\omega C}$ or $\omega>\frac{1}{\sqrt{L C}}$
or $n>\frac{1}{2 \pi \sqrt{L C}}$ or $n>n_{r}$ where $n_{r}=$ resonant frequency
(b)
$e=L \frac{d I}{d t} L=\frac{e d t}{d I}=\frac{8(0.05)}{(4-2)}=0.2 \mathrm{H}$

$$
U=\frac{1}{2} \frac{q^{2}}{C}=\frac{1}{2 C}\left(q_{0} e^{-t / \tau}\right)^{2}=\frac{q_{0}^{2}}{2 C} e^{-2 t / \tau}(\text { where } \tau=C R)
$$

$$
\begin{array}{rlrl}
U & =U_{i i^{e^{-2 t / \tau}}} \\
\frac{1}{2} U_{i} & =U_{i i^{-2 t_{1} / \tau}} \\
& \frac{1}{2} & =e^{-2 t_{1} / \tau} \\
\Rightarrow \quad t_{1} & =\frac{\tau}{2} \ln 2 \\
\text { Now } \quad q & =q_{0^{e}}-t / \tau \\
& \frac{1}{2} q_{0} & =q_{0^{-e^{-t 2} / \tau}} \\
& t_{2} & =\tau \ln 4=2 \tau \ln 2 \\
\therefore \quad & \frac{t_{1}}{t_{2}} & =\frac{1}{4}
\end{array}
$$

(a)

At resonance $L C R$ series circuit behaves as pure resistive circuit. For resistive circuit

$$
\phi=0^{\circ}
$$

(b)
$Z=\sqrt{R^{2}+X^{2}}=\sqrt{4^{2}+3^{2}}=5$
$\therefore \cos \phi=\frac{R}{Z}=\frac{3}{5}=0.6$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	A	D	C	C	B	B	A	D	A			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	C	A	D	D	B	C	C	A	B			

