Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 3

Topic :-Alternating current

1
(b)
$Z=\sqrt{R^{2}+X_{L}^{2}}, X_{L}=\omega L$ and $\omega=2 \pi f$
$\therefore Z=\sqrt{R^{2}+4 \pi^{2} f^{2} L^{2}}$
(b)
$V_{r m s}=\frac{V_{0}}{\sqrt{2}}=\frac{120}{1.414}=84.8 \mathrm{~V}$
(a)

This is a combined example of growth and decay of current in an $L-R$ circuit.

The current through circuit just before shorting the battery,

$$
I_{0}=\frac{E}{R}=1 \mathrm{~A}
$$

(as inductor would be shorted in steady state)
After this decay of current starts in the circuit according to the equation $I=I_{0} e^{-t / \tau}$
Where $\tau=L / R$.

$I=1 \times e^{-\left(1 \times 10^{-3}\right) /\left(100 \times 10^{-3} / 100\right)}=(1 / e) \mathrm{A}$
$\frac{R}{L}=\frac{e / i}{e d t / d i}=\frac{1}{d t}=$ frequency.
(a)

Phase difference relative to the current
$\phi=\left(314 t-\frac{\pi}{6}\right)-(314 t)=-\frac{\pi}{6}$
(b)

At $t=0$, phase of the voltage is zero, while phase of the current is $-\frac{\pi}{2}$, i.e., voltage leads by $\frac{\pi}{2}$
(d)
$Z^{2}=R^{2}+(2 \pi f L)^{2}$

$$
\begin{aligned}
& =(30)^{2}+\left(2 \pi \times 50 \times \frac{0.4}{\pi}\right)^{2} \\
& =(900+1600)=2500
\end{aligned}
$$

or

$$
Z=50 \Omega
$$

Also, $\quad I=\frac{V}{Z}=\frac{200}{50}=4 \mathrm{~A}$
(b)

We know that Q - factor of series resonant circuit is given as

$$
Q=\frac{\omega_{r} L}{R}
$$

Here, $L=8.1 \mathrm{mH}, C=12.5 \mu \mathrm{~F}, R=10 \Omega, f=500 \mathrm{~Hz}$

$$
\begin{aligned}
\therefore \quad Q & =\frac{\omega_{r} L}{R}=\frac{2 \pi f L}{R} \\
& =\frac{2 \times \pi \times 500 \times 8.1 \times 10^{-3}}{10}=\frac{8.1 \pi}{10}=2.5434
\end{aligned}
$$

(b)

For capacitive circuits $X_{C}=\frac{1}{\omega C}$
$\therefore i=\frac{V}{X_{C}}=V \omega C \Rightarrow i \propto \omega$
(b)
$V_{0}=\sqrt{2} V_{r m s}=10 \sqrt{2}$
(a)

In L-R circuit, the growing current at time t is given $\mathrm{y} i=i_{0}\left[1-e^{-\frac{t}{\tau}}\right]$ where $i_{0}=\frac{E}{R} \quad$ and $\tau=$ $\frac{L}{R}$
\therefore Charge passed through the battery in one time constant is

$$
\begin{gathered}
q=\int_{0}^{\tau} i d t=\int_{0}^{\tau} i_{0}\left(1-e^{-t / r}\right) d t \\
q=i_{0} \tau-\left[\frac{i_{0} e^{-t}}{-2 / \tau}\right]_{0}^{t}=i_{0} \tau+i_{0} \tau\left[e^{-1}-1\right] \\
=i_{0} \tau-i_{0} \tau+\frac{i_{0} \tau}{e} \\
q=\frac{i_{0} \tau}{e}=\frac{(E / R)(L / R)}{e}=\frac{e l}{e R^{2}}
\end{gathered}
$$

(b)
$P_{i}=240 \times 0.7=168 \mathrm{~W}, P_{0}=140 \mathrm{~W}$
$\eta=\frac{P_{0}}{P_{i}} \times 100=\frac{140}{168} \times 100 \approx 80 \%$
(c)

Energy stored in a inductor L carrying
Current i is $U=\frac{1}{2} L i^{2}$
Rate at which energy is stored

$$
=\frac{d U}{d t}=\frac{1}{2} L 2 i\left(\frac{d i}{d t}\right)=L i\left(\frac{d i}{d t}\right)
$$

At $t=0, i=0, \quad \therefore \frac{d U}{d t}=0$
At $t=\infty, i=i_{0}$ (constant), $\quad \therefore \frac{d i}{d t}=0$
(d)

Required time $t=T / 4=\frac{1}{4 \times 50}=5 \times 10^{-3}$ sec
(a)

Maximum voltage is AC circuit
$V_{0}=282 \mathrm{~V}$
$V=\frac{V_{0}}{\sqrt{2}}=\frac{282}{\sqrt{2}}$
$V=\frac{282}{1.41}=\frac{28200}{141}$
$V=200 \mathrm{~V}$
(b)
$X_{C}=\frac{1}{2 \pi v C}=\frac{1}{0}=\infty$

(b)
$Z=\sqrt{R^{2}+X_{L}^{2}}=\sqrt{10^{2}+(2 \pi \times 60 \times 2)^{2}}=753.7$
$\therefore i=\frac{120}{753.7}=0.159 \mathrm{~A}$
(b)

An alternating current is one whose magnitude changes continuously with time between zero and a maximum value and whose direction reverses periodically. The relation between frequency (f) and time (T) is.

As is clear from the figure time taken to reach the maximum value is

$$
\frac{T}{4}=\frac{0.02}{4}=0.005 \mathrm{~s}
$$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	C	B	A	D	A	B	D	D	B		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	B	B	A	B	C	D	A	B	B	B		

