Class : XIIth
Date :
Solutions

Subject : PHYSICS
DPP No. : 2

Topic :-Alternating current

1
(b)

From the relation, $\tan \phi=\frac{\omega L}{R}$
Power factor $\cos \phi=\frac{1}{\sqrt{1+\tan ^{2} \phi}}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{1+\left(\frac{\omega L}{R}\right)^{2}}} \\
& =\frac{R}{\sqrt{R^{2}+\omega^{2} L^{2}}}
\end{aligned}
$$

(b)

The applied voltage is given by $V=\sqrt{V_{R}^{2}+V_{L}^{2}}$
$V=\sqrt{(200)^{2}+(150)^{2}}=250$ volt
(d)

The voltage across secondary in zero, as transformer does not work on DC supply.
(c)

From $e=\frac{L d i}{d t}$, when $\frac{d i}{d t}=1, e=L$

6

7
(b)
$\cos \phi=\frac{R}{Z}=\frac{R}{\sqrt{R^{2}+\omega^{2} L^{2}}}$
$=\frac{12}{\sqrt{(12)^{2}+4 \times \pi^{2} \times(60)^{2} \times(0.1)^{2}}} \Rightarrow \cos \phi=0.30$
$\frac{L_{2}}{L_{1}}=\frac{N_{2}^{2}}{N_{1}^{2}}$
$\therefore \quad L_{2}=L_{1} \frac{N_{2}^{2}}{N_{1}^{2}}=1.5\left(\frac{500}{100}\right)^{2}=375 \mathrm{mH}$
(d)

Magnetic field intensity at a distance r from the straight wire carrying current is

$$
B=\frac{\mu_{0} i}{2 \pi r}
$$

As area of loop, $\quad A=a^{2}$
And magnetic flux, $\quad \phi=B A$
$\therefore \phi=\frac{\mu_{0} i a^{2}}{2 \pi r}$
The induced emf in the loop is

$$
\begin{gathered}
e=\left|\frac{d \phi}{d t}\right|=\left|\frac{d}{d t} \frac{\mu_{0} i a^{2} v}{2 \pi r}\right| \\
e=\frac{\mu_{0} i a^{2} d r}{2 \pi r^{2} d t}=\frac{\mu_{0} i a^{2} v}{2 \pi r^{2}}
\end{gathered}
$$

Where $v=\frac{d r}{d t}$ is velocity.
(c)

Phase difference $\Delta \phi=\phi_{2}-\phi_{1}=\frac{\pi}{6}-\left(\frac{-\pi}{6}\right)=\frac{\pi}{3}$
(b)

As $L=\frac{\mu_{0} N^{2} A}{l}$
$\therefore A \rightarrow \frac{2 \times 2 \times 4}{2}$ times $=8$ times
(a)
$i_{P}=\frac{n_{s}}{n_{P}} i_{s}=\frac{50}{200} \times 40=10 \mathrm{~A}$
(a)

Current $i=i_{0} \sin (\omega t+\phi)$
$i_{p}=i_{0} \sin \omega t \cos \phi+i_{0} \cos \omega t \sin \phi$
Thus, $\quad i_{0} \cos \phi=10$

$$
i_{0} \sin \phi=8
$$

Hence, $\quad \tan \phi=\frac{4}{5}$
(d)

In a purely inductive circuit, current is

$$
i=i_{0} \sin \left(\omega t-\frac{\pi}{2}\right)
$$

Which shows that the current lags behind the emf by a phase angle of $\frac{\pi}{2}$ or 90° or the emf leads the current by a phase angle of $\frac{\pi}{2}$ or 90°.
(b)
$P=\frac{V_{r m s}^{2}}{R}=\frac{(30)^{2}}{10}=90 \mathrm{~W}$
(c)

In series LCR, the impedance of the circuit is given by
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
At resonance, $X_{L}=X_{C}$
$\therefore Z=R$
At resonance, the phase difference between the current and voltage is 0°. Current is maximum at resonance

$$
e=\frac{E_{P} i_{p}}{E_{s}}=\frac{1100 \times 100}{220}=500 \mathrm{~A}=0.5 \mathrm{kA}
$$

(c)

Impedance $Z=\sqrt{R^{2}+X^{2}}=\sqrt{(8)^{2}+(6)^{2}}=10 \Omega$

ANSWER-KEY														
Q.	1	2	3	4	5	6	7	8	9	10				
A.	B	A	B	D	C	B	B	D	C	B				
Q.	11	12	13	14	15	16	17	18	19	20				
A.	A	A	A	D	B	B	C	D	C	C				

