Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 10

Topic :-Alternating current

1
(a)

Impedance of $L C R$ circuit will be minimum at resonant frequency so

$$
\begin{aligned}
& V_{0}=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{1 \times 10^{-3} \times 0.1 \times 10^{-6}}} \\
& =\frac{10^{5}}{2 \pi} \mathrm{~Hz}
\end{aligned}
$$

(b)

Here, resistance of rod $=2 \Omega . r=0.1 \mathrm{~m}, B=50 \mathrm{~T}$, along $z-$ axis $\omega=20 \mathrm{rads}^{-1}$.
Potential difference between centre of the ring and the rim is

$$
V=\frac{1}{2} B \omega r^{2}=\frac{1}{2} \times 50 \times 20 \times(0.1)^{2}=5 \mathrm{~V}
$$

The equivalent circuit of the arrangement is shown in figure

A	
10Ω	10Ω
0	
10Ω	
B	
10	

5 V

Current through external resistance,

$$
i=\frac{E}{R+r}=\frac{5}{10+5}=\frac{1}{3} \mathrm{~A}
$$

(c)
$\tan \phi=\frac{\omega L}{R}=\frac{2 \pi \times 50 \times 0.21}{12}=5.5 \Rightarrow \phi=80^{\circ}$

5

7
(d)
$e=L d i / d t=4 \times \frac{5}{1 / 1500}=30000 \mathrm{~V}=30 \mathrm{kV}$
(a)
$X_{L}=2 \pi f L=2 \pi\left(\frac{50}{\pi}\right) \times 1=100 \Omega$
$X_{C}=\frac{1}{2 \pi f C}$ $=\frac{1}{2 \pi\left(\frac{50}{\pi}\right) \times 20 \times 10^{-6}}$

$$
=500 \Omega
$$

Impedence $Z=\sqrt{(R)^{2}+\left(X_{c}-X_{L}\right)^{2}}$

$$
=\sqrt{(300)^{2}+(400)^{2}}
$$

$$
=500 \Omega
$$

(d)
$Z=\sqrt{(R)^{2}+\left(X_{L}-X_{C}\right)^{2}}$;
$R=10 \Omega, X_{L}=\omega L=2000 \times 5 \times 10^{-3}=10 \Omega$
$X_{C}=\frac{1}{\omega C}=\frac{1}{2000 \times 50 \times 10^{-6}}=10 \Omega$, i.e., $Z=10 \Omega$
Maximum current $i_{0}=\frac{V_{0}}{Z}=\frac{20}{10}=2 \mathrm{~A}$
Hence $i_{r m s}=\frac{2}{\sqrt{2}}=1.4 \mathrm{~A}$ and $V_{r m s}=4 \times 1.41=5.64 \mathrm{~V}$
(d)
$V=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}$
$\because V_{R}=V \because V_{L}=V_{C}$
\therefore Reading of voltmeter $=220 \mathrm{~V}$
Reading of ammeter $I_{r m s}=\frac{E_{r m s}}{Z}$
$=\frac{220}{100}=2.2 \mathrm{~A}$

Motion emf induced in the connector
$e=B l v=2(1)(2)=4 \mathrm{~V}$
This acts as a cell of emf 4 V and internal resistance $2 \Omega .6 \Omega$ and 3Ω resistors are in
parallel.
$\therefore \frac{1}{R_{P}}=\frac{1}{6}+\frac{1}{3}=\frac{1+2}{6}=\frac{3}{6}=\frac{1}{2}$
$R_{P}=2 \Omega$

$$
R_{P}=2 \Omega
$$

6Ω| 4 V | |
| :---: | :---: |
| 2Ω | 4 V
 2Ω
 2Ω |

$\therefore \quad$ Current through the connector (i)

$$
=\frac{E}{R_{P}+r}=\frac{4}{2+2}=1 \mathrm{~A} .
$$

Magnetic force on the connector

$$
=B i l=(1)(1)=2 \mathrm{~N}
$$

Therefore, to keep the connector moving with a constant velocity, a force of 2 N has to be applied to the right side.
(c)

Heat produced by ac $=3 \times$ Heat produced by dc
$\therefore i_{r m s}^{2} R t=3 \times i^{2} R t \Rightarrow i_{r m s}^{2}=3 \times 2^{2}$
$\Rightarrow i_{r m s}=2 \sqrt{3}=3.46 \mathrm{~A}$
(d)

Brightness $\propto P_{\text {consumed }} \propto \frac{1}{R}$. For bulb, $R_{a c}=R_{d c}$, so brightness will be equal in both the Cases
(c)

$$
\begin{aligned}
E & =141 \sin 628 t \\
\therefore \quad E_{r m s} & =\frac{E_{0}}{\sqrt{2}} \\
& =\frac{141}{1.41}=100 \mathrm{~V}
\end{aligned}
$$

and

$$
\begin{aligned}
v= & \frac{\omega}{2 \pi} \\
& =\frac{628}{2 \times 3.14}=100 \mathrm{~Hz}
\end{aligned}
$$

(c)

Here, $R=10 \Omega$. As is known,
$|d q|=\frac{d \phi}{R}=|i d t|=$ area under $i-t$ graphs.
$\therefore \frac{d \phi}{R}=\frac{(4)(0.1)}{2}=0.2$
$d \phi=0.2 R=0.2 \times 10=2 \mathrm{~Wb}$
(a)

From $\phi=M i$

$$
\frac{M_{1}}{M_{2}}=\frac{\phi_{1}}{\phi_{2}}=\frac{10^{-3} \times 200}{0.8 \times 10^{-3} \times 400}=\frac{10}{16}=0.625
$$

Here, $V_{r m s}=220 \mathrm{~V}, \mathrm{v}=50 \mathrm{~Hz}$
Peak value of voltage $V_{0}=\sqrt{2} V_{\text {rms }}=220 \sqrt{2} \mathrm{~V}$
\therefore The instantaneous value of voltage is
$V=V_{0} \sin 2 \pi v t=220 \sqrt{2} \sin 2 \pi \times 50 t$

$$
=220 \sqrt{2} \sin 100 \pi t
$$

(d)
$e=\frac{M d I}{d t}=0.09 \times \frac{20}{0.006}=300 \mathrm{~V}$
(a)

Current through the bulb $i=\frac{P}{V}=\frac{60}{10}=6 \mathrm{~A}$

$V=\sqrt{V_{R}^{2}+V_{L}^{2}}$
$(100)^{2}=(10)^{2}+V_{L}^{2}$
$\Rightarrow V_{L}=99.5$ Volt
Also $V_{L}=i X_{L}=i \times(2 \pi v L)$
$\Rightarrow 99.5=6 \times 2 \times 3.14 \times 50 \times L$
$\Rightarrow L=0.052 \mathrm{H}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	B	C	C	D	B	A	B	D	D			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	D	A	C	D	C	C	A	A	D	A			

