

13

 α -hydroxy acids form lactides, γ and δ -hydroxy acids form lactones, (cyclic compounds). While β -hydroxy acids form α , β -unsaturated acid on heating

CH₃-CH₂-CH₂-CH-CH₂-
$$\overset{O}{C}$$
-OH $\xrightarrow{\Delta}_{-H_2O}$
OH
CH₃-CH₂CH₂CH=CH- $\overset{O}{C}$ -OH
 α, β -unsaturated acid

14

(c)

This is Knovengeal reaction.

15 **(d)**

For the conversion of primary alcohol into aldehyde with the same number of carbon, the most suitable reagent is pyridinium chlorochromate (PCC).

 $RCH_2OH \xrightarrow{PCC} RCHO$

Note PCC is the mixture of pyridine, CrO₃ and HCl in 1:1:1 ratio.

16

(c)

(a)

In 2, 4, 6-tri-nitrobenzoic acid, the decarboxylation takes place most easily, because of -I effect of nitro group, whereas in the dicarboxylic acid with one carbon atom having two carboxylic group it is also easier to remove CO_2 . Hence, the order of ease of decarboxylation NO₂

$$O_2N - OOH > CH_2 COOH$$

IV NO_2 III

> CH₂=CH-CH₂COOH > CH₃COOH II I

19

As the number and the size of the alkyl groups increases, reactivity decreases. Hence, the reactivity order is

$$\begin{array}{c} H \\ H \\ H \\ \hline C = O \\ H_{3}C \\ \hline C = O \\ H_{3}C \\ \hline C = O \\ H_{3}C \\ \hline C = O \\ CH_{3})_{3}C \\ C = O \\ CH_{3})_{3}C$$

20 **(c)**

Keto group is protected by ethylene glycol being reduced and ester radical of the compound is reduced to tertiary alcohol by reaction with Grignard reagent and subsequent hydrolysis

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	D	A	В	С	D	Α	Α	В	Α
Q .	11	12	13	14	15	16	17	18	19	20
A.	D	А	С	С	D	С	A	С	A	С