

Class: XIIth Date:

Solutions

Subject : CHEMISTRY

DPP No.: 9

Topic :- Alcohols, Phenols & Ethers

1 **(b)**

$$CH_{3}CH_{2}ONa + C_{2}H_{5}Br\frac{\text{Williamson's}}{\text{synthesis}}CH_{3}CH_{2}OCH_{2}CH_{3} + NaBr$$

Sodiumethoxide bromo

ethoxyethane

ethane

2 **(a)**

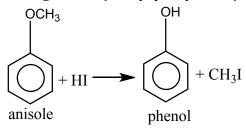
Reactivity order of alcohols towards ZnCl₂ and conc. HCl is *ter*. alcohol > *sec* alcohol > *pri*

alcohol

 $\begin{array}{c} \text{CH}_3 \\ | \\ \text{Trimethyl carbinol is CH}_3 - \text{C} - \text{OH} \\ | \\ \text{CH}_3 \end{array}$

It is tertiary alcohol.

3 **(b)**


Peroxides are decomposed on heating with H₂SO₄

4 (a)

Glycerol is not reduced because of extensive H-bonding.

5 **(a)**

When an alkyl aryl ether is heated with HI, halogen goes with alkyl group. Therefore, heating anisole (methyl phenyl ether) with HI phenol and methyl iodide are obtained.

6 **(b)**

C - Br bond is weaker as compared to C - Cl bond

CI—Br
$$\xrightarrow{\text{Mg/ether}}$$
 CI—MgBr $\xrightarrow{\text{HCHO}}$ CI—CH₂OF

9 **(b)**

Higher concentration of substrate less easily undergoes fermentation; (a), (c), (d) favours fermentation.

10 **(b)**

The correct order of stability of carbocation is as follows

$$\bigoplus_{\Theta} > \bigoplus_{\Theta} > \bigoplus_{\Theta}$$

11 **(a**)

Alcohols with same molecular weight are expected to have almost same boiling point however two more factors other than molecular weight are important, they are namely H-boiling and surface area of molecule. Both these factors are least in 3° alcohols and maximum in 1° alcohols. Hence, 3° alcohols have least boiling point while 1°alcohols have maximum boliling point.

12 **(d)**

will not with ϕ NNCl to give dye

13 **(a)**

Phenol cannot be distinguished from ethanol by sodium because both evolve hydrogen with sodium.

 $2C_6H_5OH + 2Na \rightarrow 2C_6H_5ONa + H_2\uparrow$

$$2C_2H_5OH + 2Na \rightarrow 2C_2H_5ONa + H_2\uparrow$$

14 **(b**)

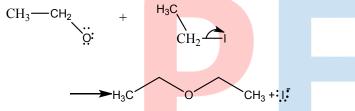
Ethers do not contain acidic H-atom.

15 **(b)**

Ethylene glycol reacts with excess of PCl₅ to give ethylene chloride.

$$\begin{array}{c|c} CH_2OH & CH_2CI \\ \hline \\ CH_2OH & PCI_5 \end{array} + \begin{array}{c|c} CH_2CI \\ \hline \\ CH_2CI \\ \end{array} + \begin{array}{c|c} 2POCI_3 + 2HCI_3 \\ \hline \\ 1, 2-dichloro \\ \end{array}$$

16 **(c)**


Due to low f.p. and mobile nature.

17 **(b)**

Structure of phenolphthalein in basic medium is as follows.

18 **(b)**

 $C_2H_5O^-$ will attract the proton from phenol converting the later into phenoxide ion. This would then make nucleophilic attack on the methylene carbon of alkyl iodide, but $C_2H_5O^-$ is in excess $C_2H_5O^-$ is better nucleophile than $C_6H_5O^-$ (phenoxide) ion since while in the former the negative charge is localised over oxygen and in the later it is delocalised over the whole molecular frame work. So, it is $C_2H_5O^-$ ion that would make nucleophilic attack at ethyl iodide to give diethyl ether (Williamson's synthesis).

20 **(d)**

− OH gp. directly attached to benzene nucleus represents for phenolic gp.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	A	В	A	A	В	C	C	В	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	D	A	В	В	С	В	В	В	D

