

Class: XIIth Date:

Solutions

Subject : CHEMISTRY

DPP No.: 7

Topic:- Alcohols, Phenols & Ethers

1 **(c)**

Presence of two isopropyl groups on oxygen atom of ether shows more powerful inductive effect.

3 **(d)**

Alcohol is initially protonated by the acid to form protonated alcohol or oxonium ion. It is then attacked by a second molecule of alcohol which acts as nucleophile

$$R - \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\bigcirc}}} - H + H^{+} \Longrightarrow R - \overset{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\bigcirc}}} - H}{\overset{H}{\overset{H}{\overset{\bullet}{\bigcirc}}}}$$

$$(protonated alcohol)$$

$$R - \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\bigcirc}}} - H$$

$$(slow) \xrightarrow{carbocation} \frac{R - \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\bigcirc}}} - H}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\bigcirc}}}}$$

$$(fast)$$

$$R - \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\bigcirc}}}} - R \xrightarrow{-\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\bigcirc}}}} - R - O - R$$

$$ether$$

4 **(b)**

$$2C_2H_5I + \underset{Ether}{Ag_2O} \longrightarrow C_2H_5OC_2H_5$$

5 **(a)**

Electron withdrawing groups (like $-NO_2$) increase the acidity of phenols by stabilising corresponding phenoxide ion. The effect of $-NO_2$ group will be minimum at m-position due to lack of increased delocalisation of electrons in it. Hence, m-nitrophenol is the weakest acid among these.

6 **(a)**

Fusel oil is a mixture of pentanol and butanol with other organic substances.

7 **(d)**

Benzene sulphonic acid and *p*-nitro phenol react with NaHCO₃ and evolve CO₂ gas.

$$SO_3H$$
 SO_3Na
 $+ NaHCO_3$
 $+ H_2O + CO_2$
 ONa
 $+ H_2O + CO_2$
 $+ NaHCO_3$
 $+ H_2O + CO_2$
 $+ H_2O + CO_2$

Because benzene sulphonic acid p-nitrophenol are stronger acids, so they are capable to evolve CO_2 with NaHCO₃.

$$HCO_3^- + H^+ \rightarrow H_2O + CO_2 \uparrow$$
 acid

8 **(d)**

Secondary alcohols give blue colour in Victor Meyer test

- 9 **(a)**Conc. HCl+ anhydrous ZnCl₂ is called as Lucas reagent. It is used to distinguish primary, secondary and tertiary alcohol.
- 10 **(a)**

 $CH_3CHO \xrightarrow{Reduction} CH_3CH_2OH$

11 (c)

 $CH_3CHOHCH_3 \xrightarrow{K_2Cr_2O_7} CH_3COCH_3 \xrightarrow{\text{oxidation}} CH_3COOH$ 2-propanol acetone acetic acid

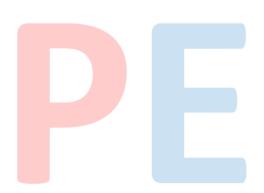
13 **(d)**

Phenol reacts with PCl_5 to form chlorobenzene. Halogenation of phenol does not take place with HX

14 **(d)**

Alcohol has polar H which makes intermolecular H-bonding possible. Ether is non-polar hence no H-bonding. Lack of H-bonding in ether makes it more volatile than alcohol.

16 **(c**)


In the given sequence of reaction, the alcohol is tertiary.

$$\begin{array}{cccc} \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \text{CH}_3 - \text{C-OH} & \xrightarrow{P+I_2} \text{CH}_3 - \text{C-I} & \xrightarrow{AgNO_2} \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \end{array}$$

No reaction
$$\stackrel{\text{HNO}_2}{\leftarrow}$$
 CH₃ $\stackrel{\text{CH}_3}{\leftarrow}$ CH₃ $\stackrel{\text{CH}_3}{\leftarrow}$ CH₃

- 17 **(c)** It is better to call nitroglycerine as glycerol trinitrate an inorganic ester of HNO_3 and glycerol.
- 18 **(d)** Br is replaced by OH gp.
- 20 **(c)** Glycerol is dehydrated on heating with KHSO₄.

$$\begin{array}{c|c} CH_2OH & CH_2 \\ \hline \\ CHOH & \Delta & CH_2 \\ \hline \\ CH_2OH & CHO \\ \\ Glycerol & acraldehyde or acrolein \\ \end{array}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	D	D	В	A	A	D	D	A	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	A	D	D	В	С	С	D	A	C

