Class: XIth
Subject : MATHS
Date:
DPP No. : 8

Topic :- STRAIGHT LINES

1. The point $P(1,1)$ is translated parallel to $2 x=y$ in the first quadrant through a unit distance. The coordinates of the new position of P are
a) $\left(1 \pm \frac{2}{\sqrt{5}}, 1 \pm \frac{1}{\sqrt{5}}\right)$
b) $\left(1 \pm \frac{1}{\sqrt{5}}, 1 \pm \frac{2}{\sqrt{5}}\right)$
c) $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$
d) $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$
2. If, $\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{2 x y}{h}=0$ represents pair of straight lines such that slope of one line is twice the other. Then, $a b: h^{2}$ is
a) $9: 8 \mathrm{~b})$
8:9c)
1:2d)
2:1
3. If the vertices of a diagonal of a square are $(-2,4)$ and $(-2,-2)$, then its other two vertices are at
a) $(1,-1),(5,1)$
b) $(1,1),(5,-1)$
c) $(1,1),(-5,1)$
d) None of these
4. If one of the diagonals of a square is along the line $x=2 y$ and one of its vertices is $(3,0)$, then its sides through this vertex are given by the equations
a) $y-3 x+9=0,3 y+x-3=0$
b) $y+3 x+9=0,3 y+x-3=0$
c) $y-3 x+9=0,3 y-x+3=0$
d) $y-3 x+3=0,3 y+x+9=0$
5. The line passing through $\left(-1, \frac{\pi}{2}\right)$ and perpendicular to $\sqrt{3} \sin \theta+2 \cos \theta=\frac{4}{r}$, is
a) $2=\sqrt{3} r \cos \theta-2 r \sin \theta$
b) $5=-2 \sqrt{3} r \sin \theta+4 r \cos \theta$
c) $2=\sqrt{3} r \cos \theta+2 r \sin \theta$
d) $5=2 \sqrt{3} r \sin \theta-4 r \cos \theta$
6. In the adjacent figure, equation of refracted ray is

a) $y=\sqrt{3} x+1$
b) $y+\sqrt{3} x-3=0$
c) $\sqrt{3} x+y-\sqrt{3}=0$
d) None of these
7. Two points A and B have coordinates $(1,1)$ and $(3,-2)$ rrespectively. The coordinates of a point at a distance $\sqrt{85}$ from B on the line through B perpendicular to $A B$, are
a) $(4,7)$
b) $(7,4)$
c) $(5,7)$
d) $(-5,-3)$
8. If $5 a+4 b+20 c=t$, then the value of t for which the line $a x+b y+c-1=0$ always passes through a fixed point is
a) 0
b) 20
c) 30
d) None of these
9. The value of λ, for which the equation $x^{2}-y^{2}-x+\lambda y-2=0$ represents a pair of straight lines, are
a) $-3,1$
b) $-1,1$
c) $3,-3$
d) 3,1
10. The line which is parallel to x-axis and crosses the curve $y=\sqrt{x}$ at an angle 45°, is
a) $y=\frac{1}{4}$
b) $y=\frac{1}{2}$
c) $y=1$
d) $y=4$
11. Consider the following statements:
I. The lines $2 x+3 y+19=0$ and $9 x+6 y-17=0$ cut the coordinates axes in concyclic points
II. The points $(2,-5)$ and $(-1,4)$ are equidistant from the line $3 x+y+5=0$

Which of these is/are correct?
a) Only (1)
b) Only (2)
c) Both of these
d) None of these
12. The angle between the lines $x^{2}+4 x y+y^{2}=0$ is
a) 60°
b) 15°
c) 30°
d) 45°
13. The y-intercept of the line passing through (2,2) and perpendicular to the line $3 x+y=3$ is
a) $1 / 3$
b) $2 / 3$
c) 1
d) $4 / 3$
14. If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$, then c equals
a) 1
b) -1
c) 3
d) -3
15. For what value of k is $4 x^{2}+8 x y+k y^{2}=9$ the equation of a pair of straight lines?
a) 0
b) 4
c) 9
d) -9
16. The equation of the line bisecting perpendicularly the segment joining the points $(-4,6)$ and $(8,8)$ is
a) $y=7$
b) $6 x+y-19=0$
c) $x+2 y-7=0$
d) $6 x+2 y-19=0$
17. The locus of the point of intersection of lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b$ is (α is a variable)
a) $2\left(x^{2}+y^{2}\right)=a^{2}+b^{2}$
b) $x^{2}-y^{2}=a^{2}-b^{2}$
c) $x^{2}+y^{2}=a^{2}+b^{2}$
d) None of these
18. If the two pairs of lines $x^{2}-2 m x y-y^{2}=0$ and $x^{2}-2 n x y-y^{2}=0$ are such that one of them represents the dissector of the angles between the other, then
a) $m n+1=0$
b) $m n-1=0$
c) $\frac{1}{m}+\frac{1}{n}=0$
d) $\frac{1}{m}-\frac{1}{n}=0$
19. The equation of the line passing through the origin and the point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ is
a) $b x-a y=0$
b) $x+y=0$
c) $a x-b y=0$
d) $x-y=0$
20. The equation $4 x^{2}-24 x y+11 y^{2}=0$ represents
a) Two parallel lines
b) Two perpendicular lines
c) Two lines through the origin
d) A circle

