

Class: XIth **Subject: MATHS DPP No.: 8** Date:

The point P(1,1) is translated parallel to 2x = y in the first quadrant through a unit distance. The coordinates of the new position of *P* are

a)
$$\left(1 \pm \frac{2}{\sqrt{5}}, 1 \pm \frac{1}{\sqrt{5}}\right)$$

b)
$$\left(1 \pm \frac{1}{\sqrt{5}}, 1 \pm \frac{2}{\sqrt{5}}\right)$$
 c) $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$

c)
$$\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$

d)
$$\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

If $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{b} = 0$ represents pair of straight lines such that slope of one line is twice the other. Then, $ab:h^2$ is

a) 9:8b)

8:9c)

1:2d)

2:1

3. If the vertices of a diagonal of a square are (-2,4) and (-2,-2), then its other two vertices are at

a) (1, -1), (5,1)

b) (1,1), (5,-1)

c) (1,1), (-5,1)

d) None of these

4. If one of the diagonals of a square is along the line x = 2y and one of its vertices is (3, 0), then its sides through this vertex are given by the equations

a)
$$y - 3x + 9 = 0.3y + x - 3 = 0$$

b)
$$y + 3x + 9 = 0.3y + x - 3 = 0$$

c)
$$y - 3x + 9 = 0.3y - x + 3 = 0$$

d)
$$y - 3x + 3 = 0.3y + x + 9 = 0$$

5. The line passing through $\left(-1,\frac{\pi}{2}\right)$ and perpendicular to $\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{r}$, is

a) $2 = \sqrt{3}r\cos\theta - 2r\sin\theta$

b) $5 = -2\sqrt{3}r\sin\theta + 4r\cos\theta$

c) $2 = \sqrt{3}r\cos\theta + 2r\sin\theta$

d) $5 = 2\sqrt{3}r\sin\theta - 4r\cos\theta$

6. In the adjacent figure, equation of refracted ray is

a) $y = \sqrt{3}x + 1$

b) $y + \sqrt{3}x - 3 = 0$ c) $\sqrt{3}x + y - \sqrt{3} = 0$ d) None of these

7. Two points A and B have coordinates (1, 1) and (3, -2) rrespectively. The coordinates of a point at a distance $\sqrt{85}$ from B on the line through B perpendicular to AB, are

a) (4, 7)

b) (7, 4)

c) (5,7)

d)(-5, -3)

8. If 5a + 4b + 20c = t, then the value of t for which the line ax + by + c - 1 = 0 always passes through a fixed point is

a) 0

b) 20

c) 30

d) None of these

9. The value of λ , for which the equation $x^2 - y^2 - x + \lambda y - 2 = 0$ represents a pair of straight lines, are

a) -3, 1

b) -1,1

c) 3, -3

d)3,1

			_		
10.	The line which is parallel to <i>x</i> -axis and crosses the curve $y = \sqrt{x}$ at an angle 45°, is				
	a) $y = \frac{1}{4}$	b) $y = \frac{1}{2}$	c) $y = 1$	d) $y = 4$	
11.	1. Consider the following statements:				
I.	The lines $2x + 3y + 19 = 0$ and $9x + 6y - 17 = 0$ cut the coordinates axes in concyclic points				
II.	The points $(2, -5)$ and $(-1, 4)$ are equidistant from the line $3x + y + 5 = 0$				
Which of these is/are correct?					
	a) Only (1)	b) Only (2)	c) Both of these	d) None of these	
12.	The angle between the lines $x^2 + 4xy + y^2 = 0$ is				
	a) 60°	b) 15°	c) 30°	d)45°	
13.	The <i>y</i> -intercept of the line passing through (2,2) and perpendicular to the line $3x + y = 3$ is				
	a) 1/3	b) 2/3	c) 1	d)4/3	
14.	14. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is $3x + 4y = 0$, then c equals				
	a) 1	b) −1	c) 3	d) −3	
15.	For what value of k is 4	is $4x^2 + 8xy + ky^2 = 9$ the equation of a pair of straight lines?			
	a) 0	b) 4	c) 9	d) -9	
16.	16. The equation of the line bisecting perpendicularly the segment joining the points (-4.6) and				
(8, 8) is					
	a) $y = 7$	b) $6x + y - 19 = 0$	c) $x + 2y - 7 = 0$	d) $6x + 2y - 19 = 0$	
17. The locus of the point of intersection of lines $x\cos\alpha + y\sin\alpha = a$ and $x\sin\alpha - y\cos\alpha = b$ is (α					
is a variable)					
		b) $x^2 - y^2 = a^2 - b^2$	-	-	
18. If the two pairs of lines $x^2 - 2mxy - y^2 = 0$ and $x^2 - 2nxy - y^2 = 0$ are such that one of them					
represents the dissector of the <mark>angles</mark> betwe <mark>en th</mark> e other, then					
	a) $mn + 1 = 0$	b) mn - 1 = 0	c) $\frac{1}{m} + \frac{1}{n} = 0$	d) $\frac{1}{m} - \frac{1}{n} = 0$	
19.					
the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$ is					
tiic	a) $bx - ay = 0$		c) $ax - by = 0$	d) x - y = 0	
20		-		ujx - y = 0	
20.	7). The equation $4x^2 - 24xy + 11y^2 = 0$ represents a) Two parallel lines b) Two perpendicular lines				
	c) Two lines through the origin		d) A circle		
	of two mes an ough a		a) II on old		