

Class: XIth
Date:
Subject: MATHS
DPP No.: 7

Topic:- straight lines

1.	The equation of perpendicular bisectors of sides <i>AB</i> and <i>AC</i> of a \triangle <i>ABC</i> are $x - y + 5 = 0$ and						
<i>x</i> +	+2y = 0 respectively. If the coordinates of vertex A are $(1, -2)$, then equation of BC is						
			c) $23x + 14y - 40 = 0$				
2.	If the line $px - qy = r$ i	ntersects the coordinate	e axes at $(a, 0)$ and $(0, b)$), thyen the value of			
a +	b is equal to						
	a) $r\left(\frac{q+p}{pq}\right)$	b) $r\left(\frac{q-p}{pq}\right)$	c) $r\left(\frac{p-q}{pq}\right)$	d) $r\left(\frac{p+q}{p-q}\right)$			
3.	The distance between t	the parallel lines $y = 2x$	x + 4 and $6x = 3y + 5$ is				
	a) $17/\sqrt{3}$	b) 1	c) $3/\sqrt{5}$	d) $17\sqrt{5}/15$			
4.	The value of $'a'$ for whi	ch the lines represented	d by $ax^2 + 5 xy + 2 y^2 =$	0 are mutually			
per	pendicular is						
	a) 2	b) -2	c) $\frac{25}{8}$	d) None of these			
5.	The vertices of $\triangle OBC$ a		d(-1, -3), then the ed	quation of the line			
parallel to BC which is a distance $\frac{1}{2}$ from the origin and cut OB and OC intercept, is							
		2	c) $2x + 2y - \sqrt{2} = 0$				
6.	Two consecutive sides	of a <mark>paral</mark> lelogram are 4	4x + 5y = 0 and 7x + 2y	= 0. One diagonal of the			
par	parallelogram is $11x + 7y = 9$. If the other diagonal is $ax + by + c = 0$, then						
	a) $a = -1$, $b = -1$, $c = 2$	2	b) $a = 1$, $b = -1$, $c = 0$				
	c) $a = -1$, $b = -1$, $c = 0$	0	d) $a = 1$, $b = 1$, $c = 0$				
7.	The equations of the lines through (1, 1) and making angle of 45° with the line $x + y = 0$ are						
	a) $x - 1 = 0$, $x - y = 0$		b) $x - y = 0$, $y - 1 = 0$				
	c) $x + y - 2 = 0$, $y - 1$	=0	d) $x - 1 = 0$, $y - 1 = 0$				
8.	The equation of the straight line perpendicular to $5x - 2y = 7$ and passing through the point of						
inte	ersection of the lines $2x$						
	a) $2x + 5y + 17 = 0$	b) $2x + 5y - 17 = 0$	c) $2x - 5y + 17 = 0$	d) $2x - 5y = 17$			
9.	The orthocentre of the	triangle whose vertices	are $(5, -2)$, $(-1,2)$ and	l (1,4), is			
	a) (1/5,14/5)	b) (14/5,1/5)	c) (1/5,1/5)	d) (14/5,14/5)			
10.	The equation(s) of the	bisector(s) of that angle	e between the lines				
<i>x</i> +	2y - 1 = 0, $3x - 6y -$	-5 = 0 which contains the	he point $(1, -3)$ is				
	a) $3x = 19$	b) $3y = 7$	c) $3x = 19$ and $3y = 7$	=			
11.	Three straight lines $2x$	+ 11y - 5 = 0,24x + 7	y - 20 = 0 and 4x - 3y	-2 = 0			
	a) From a triangle		b) Are only concurrent				
	c) Are concurrent with	one line bisecting the a	ngle between the other t	wo d) None			
of t	he above						

12.	Let a and b be non-zero	o and real numbers. The	en, the equation $(ax^2 + b)$	$(x^2 + c)(x^2 - 5xy + 6y^2)$			
	represents		• ,				
	-	when $c = 0$ and a,b are o	f the same sign b)	Two straight lines and			
a ci	,	s of sign opposite to tha	9 ,	Ü			
		9 11		and <i>c</i> is of sign opposite			
o t	hat of a	,	=	se, when a and b are of			
he	same sign and c is of sig	gn opposite to that of a					
		the point of intersection	of the lines $100x + 50y$	-1 = 0 and			
75x + 25y + 3 = 0 and makes equal intercept on the axes. Its equation is							
	a) $25x + 25y - 1 = 0$	b) $5x - 5y + 3 = 0$	c) $25x + 25y - 4 = 0$	d)25x - 25y + 6 = 0			
14.	If the line segment join	(2,3) and $(-1,2)$ is	divided internally in the	e ratio 3 :4 by the line			
$x + 2y = \lambda$, then $\lambda =$							
	a) $\frac{41}{7}$	b) $\frac{5}{7}$	c) $\frac{36}{7}$	d) $\frac{31}{7}$			
15.	The angle between the	Γhe angle between the lines $\sqrt{3}x - y - 2 = 0$ and $x - \sqrt{3}y + 1 = 0$ is					
	a) 90°	b) 60°		d)30°			
16.	A diagonal of the rectangle formed by the lines $x^2 - 7x + 6 = 0$ and $y^2 - 14y + 40 = 0$ is						
		b) $5x - 6y = 0$					
17.	7. If a line with y-intercept 2, is perpendicular to the line $3x - 2y = 6$, then its x- intercept is						
	a) 1	b) 2	c) -4	d)3			
18.	The distance between the pair of parallel lines given by $x^2 - 1005x + 2006 = 0$ is						
	a) 1001	b) 1000	c) 1005	d)2006			
19.	The pair of lines $\sqrt{3} x^2$	$-4xy + \sqrt{3}y^2 = 0$ are re	otated about the origin b	by $\pi/6$ in anticlockwise			
sense. The equation of the pair in the new position is							
	a) $\sqrt{3} x^2 - xy = 0$	b) $x^2 - \sqrt{3} xy = 0$	c) $xy - \sqrt{3} y^2 = 0$	d) None of these			
20.	The area of the parallel	logra <mark>m formed by t</mark> he lir	nes				
3x - 4y + 1 = 0, $3x - 4y + 3 = 0$, $4x - 3y - 1 = 0$ and $4x - 3y - 2 = 0$, is							
	a) $\frac{1}{6}$ sq. units	b) $\frac{2}{7}$ sq. units	c) $\frac{3}{8}$ sq. units	d) None of these			