

Subject: MATHS DPP No.: 2 Class: XIth Date:

TOPIC: - STRAIGHT LINES						
1.	If <i>PM</i> is the perpendicular from $P(2,3)$ onto the line $x + y = 3$, then the coordinates of <i>M</i> are					
		b) (– 1, 4)		d) $(4, -1)$		
2.	A line through the point			, ,		
axis is rotated about A in clockwise direction through an angle of 15°. Then, the equation of the						
straight line in the new position is						
	a) $(2-\sqrt{3})x+y-4+$		b) $(2 - \sqrt{3})x - y - 4 +$	$-2\sqrt{3}=0$		
	c) $(2-\sqrt{3})x-y+4+$	$2\sqrt{3} = 0$	d) $(2 - \sqrt{3})x + y + 4 +$	$-2\sqrt{3}=0$		
3.	The distance between the pair of parallel lines $x^2 + 2xy + y^2 - 8ax - 8ay - 9a^2 = 0$ is					
		b) $\sqrt{10}a$	c) 10 a	d) $5\sqrt{2}a$		
4.	One vertex of the equilateral triangle with centroid at the origin and one side as $x + y - 2 = 0$					
is	_			-		
	a) $(-1, -1)$	b) (2, 2)	c) $(-2, -2)$	d) None of these		
5.	The equation of straight	t lin <mark>e thr</mark> ough th <mark>e inte</mark> rs	section of the lines $x - 2$	2y = 1 and x + 3y = 2		
and	parallel to $3x + 4y = 0$,	is				
	a) $3x + 4y + 5 = 0$	b) $3x + 4y - 10 = 0$	c) $3x + 4y - 5 = 0$	d) $3x + 4y + 6 = 0$		
6.	The straight line $3x + y$	y = 9 divided the line se	gment joining the points	s (1, 3) and (2,7) in the		
rati	0					
	a) 3:4 externally	b) 3:4 internally	c) 4:5 internally	d) 5:6 externally		
7.	Orthocentre of the triangle whose sides are given by $4x - 7y + 10 = 0$, $x + y - 5 = 0$ and					
7x + 4y - 15 = 0 is						
	, ,		c) $(-1,2)$			
8.	The diagonals of the parallelogram whose sides are $lx + my + n = 0$, $lx + my + n'$					
= 0, mx + ly + n = 0, mx + ly + n' = 0 include an angle						
	a) $\pi/3$	b) $\pi/2$	c) $\tan^{-1}\left(\frac{l^2-m^2}{l^2+m^2}\right)$	d) $\tan^{-1}\left(\frac{2 lm}{l^2+m^2}\right)$		
9.	The centroid of an equilateral triangle is $(0, 0)$. If two vertices of the triangle lie on $x + y = 2\sqrt{2}$,					
then one of them will have its coordinates						
	a) $(\sqrt{2} + \sqrt{6}, \sqrt{2} - \sqrt{6})$	b) $(\sqrt{2} + \sqrt{3}, \sqrt{2} - \sqrt{3})$	c) $(\sqrt{2} + \sqrt{5}, \sqrt{2} - \sqrt{5})$	d) None of theses		
10.	If the lines $ax + 2y + 1 = 0$, $bx + 3y + 1 = 0$, $cx + 4y + 1 = 0$ are concurrent, then a,b,c are in					
	a) AP	b) GP	c) HP	d) None of these		
11.	Locus of the centroid of	ftriangle whose vertice	s are $(a\cos t, a\sin t)$, $(b$	$\sin t$, $-b\cos t$) and (1,0),		
whe	where t is a parameter, is					

a) $(3x - 1)^2 + (3y)^2 = a^2 - b^2$ b) $(3x - 1)^2 + (3y)^2 = a^2 + b^2$ c) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$

d) $(3x + 1)^2 + (3y)^2 = a^2 - b^2$				
2. If θ is the acute angle between the lines given by $6x^2 + 5xy - 7x + 13y - 3 = 0$, then the				
equation of the line passing through the point of in	tersection of these lines	and making angle $ heta$ with		
the positive <i>x</i> -axis is				
a) $2x + 11y + 13 = 0$ b) $11x - 2y + 13 = 0$	c) $2x - 11y + 2 = 0$	d) $11x + 2y - 11 = 0$		
13. If $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$ represents a pair of straight lines such that slope of one line is twice the				
other, then $ab:h^2$ is				

c) 1:2

14. The lines bisecting the angle between the bisectors of the angles between the lines $ax^2 + 2$ $hxy + by^2 = 0$ are given by

a)
$$(a - b)(x^2 - y^2) - 4hxy = 0$$

b)
$$(a - b)(x^2 + y^2) + 4hxy = 0$$

c)
$$(a-b)(x^2-y^2)+4 hxy = 0$$

d) None of these

15. The line passing through $\left(-1, \frac{\pi}{2}\right)$ and perpendicular to $\sqrt{3}\sin\theta + 2\cos\theta = \frac{4}{r}$ is

a)
$$2 = \sqrt{3}r\cos\theta - 2r\sin\theta$$

b)
$$5 = -2\sqrt{3}r\sin\theta + 4r\cos\theta$$

c)
$$2 = \sqrt{3}r\cos\theta + 2r\sin\theta$$

d)
$$5 = 2\sqrt{3}r\sin\theta + 4r\cos\theta$$

16. Given a family of lines a(2x + y + 4) + b(x - 2y - 3) = 0, the number of lines belonging to the family at a distance $\sqrt{10}$ from P(2, -3) is

a) 9:8

b)8:9

d)2:1

17. Let the perpendiculars from any point on the line 2x + 11y = 5 upon the lines

24x + 7y - 20 = 0 and 4x - 3y - 2 = 0 have the lengths p_1 and p_2 respectively. Then,

a)
$$2p_1 = p_2$$

b)
$$p_1 = p_2$$

c)
$$p_1 = 2p_2$$

d) None of these

18. The equation of bisectors of the angles between the lines |x| = |y| are

a)
$$y = \pm x$$
 and $x = 0$

b)
$$x = \frac{1}{2}$$
 and $y = \frac{1}{2}$

c)
$$y = 0$$
 and $x = 0$

a) $y = \pm x$ and x = 0 b) $x = \frac{1}{2}$ and $y = \frac{1}{2}$ c) y = 0 and x = 0 d) None of these 19. The pairs of straight lines $x^2 - 3xy + 2y^2 = 0$ and $x^2 - 3xy + 2y^2 + x - 2 = 0$ form a

a) Square but not rhombus

b) Rhombus

c) Parallelogram

d) Rectangle but not a square

20. The straight line whose sum of the intercepts on the axes is equal to half to the product of the intercepts, passes through the point whose coordinates are