Class: XIth
Date :

Subject : MATHS
DPP No. : 10

Topic :- STRAIGHT LINES

1. If the line $\frac{x}{a}+\frac{y}{b}=1$ moves such that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}$ where c is a constant, then the locus of the foot of the perpendicular from the origin to the line is
a) Straight line
b) Circle
c) Parabola
d) Ellipse
2. The base $B C$ of $\triangle A B C$ is bisected at (p, q) and equation of sides $A B$ and $A C$ are $p x+q y=1$ and $q x+p y=1$ respectively. Then, the equation of the median through A is
a) $(2 p q-1)(p x+q y-1)=\left(p^{2}+q^{2}-1\right)(q x+p y-1)$
b) $(q x+q y-1)(q x+p y-1)=0$
c) $(p x+q y-1)(q x-p y-1)=0$
d) None of the above
3. The straight lines $x+y-4=0,3 x+y-4=0, x+3 y-4$ form a triangle which is
a) Isosceles
b) Right angled
c) Equilateral
d) None of these
4. The image of the point $(1,3)$ in the line $x+y-6=0$, is
a) $(3,5)$
b) $(5,3)$
c) $(1,-3)$
d) $(-1,3)$
5. The lines $x \cos \alpha+y \sin \alpha=p_{1}$ and $x \cos \beta+y \sin \beta=p_{2}$ will be perpendicular, if
a) $\alpha \pm \beta=\frac{\pi}{2}$
b) $\alpha=\frac{\pi}{2}$
c) $|\alpha-\beta|=\frac{\pi}{2}$
d) $\alpha=\beta$
6. The limiting position of the point of intersection of the lines $3 x+4 y=1$ and $(1+c) x+3 c^{2}$ $y=2$ as c tends to 1 , is
a) $(-5,4)$
b) $(5,-4)$
c) $(4,-5)$
d) None of these
7. If the lines $a x+k y+10=0, b x+(k+1) y+10=0$ and $c x+(k+2) y+10=0$ are concurrent, then
a) a, b, c are in GP
b) a, b, c are in HP
c) a, b, c are in AP
d) $(a+b)^{2}=c$
8. The distance between the parallel lines $9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0$, is
a) $\frac{1}{\sqrt{10}}$
b) $\frac{2}{\sqrt{10}}$
c) $\frac{4}{\sqrt{10}}$
d) $\sqrt{10}$
9. If two of the lines given by the equation $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}=(a \neq 0)$ make complementary angles with x-axis in anticlockwise sense, then
a) $a(a-c)=d(b-d)$
b) $d(a-c)=a(d-b)$
c) $a(a-c)=d(d-b)$
d) None of these
10. The equation of the pair of straight lines parallel to x-axis and touching the circle $x^{2}+y^{2}$ $-6 x-4 y-12=0$ is
a) $y^{2}-4 y-21=0$
b) $y^{2}+4 y-21=0$
c) $y^{2}-4 y+21=0$
d) $y^{2}+4 y+21=0$
11. Let $P=(-1,0), Q=(0,0)$ and $R=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle $P Q R$ is
a) $\sqrt{3} x+y=0$
b) $x+\frac{\sqrt{3}}{2} y=0$
c) $\frac{\sqrt{3}}{2} x+y=0$
d) $x+\sqrt{3} y=0$
12. Two of the lines represented by the equation $a y^{4}+b x y^{3}+c x^{2} y^{2}+d x^{3} y+e x^{4}=0$ will be perpendicular, then
a) $(b+d)(a d+b e)+(e-a)^{2}(a+c+e)=0$
b) $(b+d)(a d+b e)+(e+a)^{2}(a+c+e)=0$
c) $(b-d)(a d-b e)+(e-a)^{2}(a+b+e)=0$
d) $(b-d)(a d-b e)+(e+a)^{2}(a+b+c)=0$
13. If $3 x^{2}+x y-y^{2}-3 x+6 y+k=0$ represents a pair of lines, then k is equal to
a) 0
b) 9
c) 1
d) -9
14. Let the base of a triangle lie along the line $x=a$ and be of length $2 a$. The area of this triangle is a^{2} if the vertex lies on the lines
a) $x=-a, x=2 a$
b) $x=0, x=a$
c) $x=a / 2, x=-a$
d) None of these
15. The distance of the point $(-2,3)$ from the line $x-y=5$ is
a) $5 \sqrt{2}$
b) $2 \sqrt{5}$
c) $3 \sqrt{5}$
d) $5 \sqrt{3}$
16. The angle between the lines in $x^{2}-x y-6 y^{2}-7 x+31 y-18=0$ is
a) 60°
b) 45°
c) 30°
d) 90°
17. The equation $12 x^{2}+7 x y+a y^{2}+13 x-y+3=0$, represents a pair of perpendicular lines. Then, the value of ' a ' is
a) $\frac{7}{2}$
b) -19
c) -12
d) 12
18. If the equation of base of an equilateral triangle is $2 x-y=1$ and the vertex is $(-1,2)$, then the length of the side of the triangle is
a) $\sqrt{\frac{20}{3}}$
b) $\frac{2}{\sqrt{15}}$
c) $\sqrt{\frac{8}{15}}$
d) $\sqrt{\frac{15}{2}}$
19. The number of lines that are parallel to $2 x+6 y+7=0$ and have an intercept of length 10 between the coordinate axes, is
a) 1
b) 2
c) 4
d) Infinitely many
20. If $a \neq b \neq c$ and if $a x+b y+c=0, b x+c y+a=0, c x+a y+b=0$ are concurrent, then $2^{a^{2} b^{-1} c^{-1}} \cdot 2^{b^{2} c^{-1} b^{-1}} \cdot 2^{2^{2^{2}-b^{-1}}}$ is equal to
a) 8
b) 0
c) 2
d) None of these
