Class : XIth
Date :

Topic :-STRAIGHT LINES

361 (a)
Let the slope of first line be m, then slope of second line is $5 m$.
Then, $m+5 m=-\frac{2 h}{b}$ and $m \cdot 5 m=\frac{a}{b}$
$\Rightarrow m=-\frac{2 h}{6 b}=\frac{-h}{3 b}$
$\therefore 5 m^{2}=\frac{a}{b} \Rightarrow 5\left(-\frac{h}{3 b}\right)^{2}=\frac{a}{b}$
$\Rightarrow \frac{5 h^{2}}{9 b^{2}}=\frac{a}{b} \Rightarrow 5 h^{2}=9 a b$
362
(a)

We have,
$|x|=|y| x= \pm y \Rightarrow x+y=0, x-y=0$
Let $(t, 4-t)$ be the required point. It is equidistant from the lines $|x|=|y|$
$\therefore\left|\frac{t+4-t}{\sqrt{2}}\right|=\left|\frac{t-(4-t)}{\sqrt{2}}\right|$
$\Rightarrow 4=|2 t-4| \Rightarrow t-2= \pm 2 \Rightarrow t=0,4$
Hence, required points are $(0,4)$ and $(4,0)$
363
(d)

Equation of line is $\frac{x}{3}+\frac{y}{4}=1$
$\Rightarrow 4 x+3 y-12=0$
Now, distance from origin $=\left|\frac{4 \times 0+3 \times 0-12}{\sqrt{3^{2}+4^{2}}}\right|=\frac{12}{5}$ units

364
 (c)

As $m \in\left(\frac{1}{2}, 3\right)$
\therefore Line $y=m x+4$ lies between
$y=3 x+1$ and $2 y=x+3$
Slope of given lines are $m_{2}=3, m=m$ and $m_{1}=\frac{1}{2}$
$\therefore \tan \theta=\frac{3-m}{1+3 m}$
and $\tan \theta=\frac{m-\frac{1}{2}}{1+\frac{m}{2}}$
$\Rightarrow \frac{3-m}{1+3 m}=\frac{2 m-1}{2+m}$
$\Rightarrow 7 m^{2}-2 m-7=0$
$\therefore m=\frac{2 \pm \sqrt{4+196}}{2 \times 7}=\frac{1}{7}(1 \pm 5 \sqrt{2})$
365 (d)
The point of intersection of the given lines is
$\left(\frac{a b}{a+b}, \frac{a b}{a+b}\right)$
Clearly, it satisfies equation of options (a),(b) and (c)

366 (c)

Equation of the straight lines are
$3 x-4 y+7=0 \ldots$ (i)
and $12 x+5 y-2=0 \ldots$ (ii)
The equation of bisectors of the angles between these lines are
$\frac{3 x-4 y+7}{\sqrt{3^{2}+4^{2}}}=\frac{12 x+5 y-2}{\sqrt{12^{2}+5^{2}}}$
$\Rightarrow \frac{3 x-4 y+7}{5}=\frac{12 x+5 y-2}{13}$
$\Rightarrow 39 x-52 y+91=60 x+25 y-10$
$\Rightarrow 21 x+77 y-101=0$

367 (b)

Given equation of pair of lines can be written as
$(3 x-y)(x+2 y)=0$
Slope of separate equations of line $3 x-y=0$ is 3 and $x+2 y=0$ is $-\frac{1}{2}$
Thus, required sum $=3-\frac{1}{2}=\frac{5}{2}$

Alternate

Sum of slope of the lines $3 x^{2}+5 x y-2 y^{2}=0$ is
$m_{1}+m_{2}=-\frac{h}{b}=\frac{5}{2}$
368 (b)
Let the another equation of line is
$x-2 y+1=0$
\therefore Equation of bisector of angle between two lines is
$\frac{2 x-y-1}{\sqrt{4+1}}= \pm \frac{x-2 y+1}{\sqrt{1+4}}$
$\Rightarrow x+y-2=0$ and $x=y$
369
(d)

Given equation can be rewritten as
$a(x+y-1)+b(2 x-3 y+1)=0$

This is the form of intersection of two lines.
$\therefore x+y-1=0$...(i)
and $2 x-3 y+1=0$
On solving Eqs. (i) and (ii), we get
$x=\frac{2}{5}$ and $y=\frac{3}{5}$
Hence, coordinates of required point are $\left(\frac{2}{5}, \frac{3}{5}\right)$
370
(a)

Since, $a x+b y+c=0$ is always passes through $(1,-2)$
$\therefore a-2 b+c=0$
$\Rightarrow 2 b=a+c$
Therefore, a, b and c are in AP
371
(a)

Let the locus of point be (x, y)
Area of triangle with points $(x, y),(1,5)$ and $(3,-7)$ is 21 sq unit
$\therefore \frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ 1 & 5 & 1 \\ 3 & -7 & 1\end{array}\right|=21$
$\Rightarrow \frac{1}{2}[x(5+7)-y(1-3)+1(-7-15]=21$
$\Rightarrow \frac{1}{2}[12 x+2 y-22]=21$
$\Rightarrow 6 x+y-32=0$
372
(c)

Now, we take $B D \perp A C$ and $A E \perp B C$

Slope of $B D=-\frac{3}{4}$
Equation of $B D, y-0=\frac{-3}{4}(x-4)$
$\Rightarrow 4 y=-3 x+12$
$\Rightarrow 3 x+4 y-12=0$
and slope of $A E=\frac{1}{4}$
\therefore Equation of $A E, y-0=\frac{1}{4}(x-0)$
$\Rightarrow x-4 y=0$
On solving Eqs. (i) and (ii), we get
$x=3, \quad y=\frac{3}{4}$
\therefore Orthocentre of the traingle is $\left(3, \frac{3}{4}\right)$
373 (b)
Let $A(2,-1)$ be one vertex of an equilateral triangle $A B C$. Then, its altitude is the length of the perpendicular from $A(2,-1)$ on $c+y-2=0$ i.e.
$A D=\left|\frac{2-1-2}{\sqrt{1+1}}\right|=\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{\sqrt{3}}{2}($ Side $)=\frac{1}{\sqrt{2}} \Rightarrow$ side $=\sqrt{\frac{2}{3}}$
374 (a)
We have, $x+y=1$
and $x y=0$

On putting $x=1-y$ from Eq. (i) into Eq. (ii), we get
$(1-y) y=0$
$\Rightarrow y=0,1$
At $y=0 \Rightarrow x=1$
and at $y=1 \Rightarrow x=0$
\therefore Coordinates of the vertices of a triangle are $(0,0),(1,0)$ and $(0,1)$
\therefore Point $(0,0)$ is its orthocentre

375 (a)

The equation of required line is
$3 x^{2}+4 x y-4 x(2 x+y)+(2 x+y)^{2}=0$
$\Rightarrow 3 x^{2}+4 x y-8 x^{2}-4 x y+4 x^{2}+y^{2}+4 x y=0$
$\Rightarrow-x^{2}+y^{2}+4 x y=0$
$\left(\right.$ Coefficient of $\left.x^{2}\right)+\left(\right.$ Coefficient of $\left.y^{2}\right)=-1+1=0$
\therefore Lines are mutually perpendicular.
$i e$, Angle between lines is $\frac{\pi}{2}$.

376 (a)

The equation of given line is
$y=m x+\frac{a}{m}$
The equation of line perpendicular to Eq. (i) is
$m y+x+\lambda=0$
This line passing through ($a, 0$).
$0+a+\lambda=0 \Rightarrow \lambda=-a$
On putting this value on λ in Eq. (ii) and solving with Eq. (i), we get
$x=0$ and $y=\frac{a}{m}$
Coordinates of the foot of perpendicular are $\left(0, \frac{a}{m}\right)$.
377
(b)
\because Slope of perpendicular $=-\left[\frac{\cos \alpha-\cos \beta}{\sin \alpha-\sin \beta}\right]=\tan \frac{\alpha+\beta}{2}$
\therefore Equation of perpendicular is
$y=\tan \left(\frac{\alpha+\beta}{2}\right) x$
On solving the Eq. (i) with the line, we get
$\left[\frac{a}{2}(\cos \alpha+\cos \beta), \frac{a}{2}(\sin \alpha+\sin \beta)\right]$
378
(d)

Mid point of the line joining the points $(4,-5)$ and $(-2,9)$ is
$\left(\frac{4-2}{2}, \frac{-5+9}{2}\right) i e,(1,2)$
\therefore Inclination of straight line passing through point $(-3,6)$ and mid point $(1,2)$ is
$m=\frac{2-6}{1+3}=\frac{-4}{4}=-1$
$\therefore \tan \theta=-1 \Rightarrow \theta=\frac{3 \pi}{4}$
379
(d)

Given pair of line is
$x^{2} \sin ^{2} \alpha+y^{2} \sin ^{2} \alpha=x^{2} \cos ^{2} \theta+y^{2} \sin ^{2} \theta-2 x y \sin \theta \cos \theta$
$\Rightarrow x^{2}\left(\sin ^{2} \alpha-\cos ^{2} \theta\right)+y^{2}\left(\sin ^{2} \alpha-\sin ^{2} \theta\right)+2(\sin \theta \cos \theta) x y=0$
On comparing with $a x^{2}+b y^{2}+2 h x y=0$
We get, $a=\sin ^{2} \alpha-\cos ^{2} \theta$,
$b=\sin ^{2} \alpha-\sin ^{2} \theta$ and $h=\sin \theta \cos \theta$
Let θ be the angle between the pair of lines.

$$
\begin{aligned}
& \therefore \tan \theta=\left|\frac{2 \sqrt{\sin ^{2} \theta \cos ^{2} \theta-\left(\sin ^{2} \alpha-\cos ^{2} \theta\right) \times\left(\sin ^{2} \alpha-\sin ^{2} \theta\right)}}{\sin ^{2} \alpha-\cos ^{2} \theta+\sin ^{2} \alpha-\sin ^{2} \theta}\right| \\
& =\left|\frac{2 \sqrt{\sin ^{2} \theta \cos ^{2} \theta-\left(\sin ^{2} \alpha\right)^{2}+\sin ^{2} \alpha \sin ^{2} \theta+\sin ^{2} \alpha \cos ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}}{-\left(1-2 \sin ^{2} \alpha\right)}\right| \\
& =\left|\frac{2 \sqrt{\sin ^{2} \alpha\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-\left(\sin ^{2} \alpha\right)^{2}}}{-\cos 2 \alpha}\right| \\
& =\left|\frac{2 \sqrt{\sin ^{2} \alpha\left(1-\sin ^{2} \alpha\right)}}{-\cos 2 \alpha}\right| \\
& \Rightarrow \tan \theta=\left|\frac{\sin 2 \alpha}{\cos 2 \alpha}\right|=\tan 2 \alpha
\end{aligned}
$$

$\Rightarrow \theta=2 \alpha$

380
(b)

Given equations of line and circle are respectively
$\sqrt{3} x+y=2 \ldots$ (i)
and $x^{2}+y^{2}=4 \ldots$ (ii)
From Eqs. (i) and (ii), we get
$x^{2}+(2-\sqrt{3} x)^{2}=4$
$\Rightarrow 4 x^{2}-4 \sqrt{3} x=0$
$\Rightarrow x(x-\sqrt{3})=0 \Rightarrow x=0, \sqrt{3}$
\therefore Points of intersection of line and circle are $(0,2)$ and $(\sqrt{3},-1)$.
Slope, of line joining (0,0) and (0,2)
$=\frac{2-0}{0-0}=\infty \Rightarrow \theta_{1}=\frac{\pi}{2}$
Also, slope of line joining $(0,0)$ and $(\sqrt{3},-1)$
$=\frac{-1}{\sqrt{3}} \Rightarrow \theta_{2}=\frac{\pi}{6}$
\therefore Required angle $=\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | A | D | C | D | C | B | B | D | A |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | A | C | B | A | A | A | B | D | D | B |
| | | | | | | | | | | |

