Class: XIth
Date :

Topic :-STRAIGHT LINES

341
(b)

The equation of a line passing through $P(1,1)$ and parallel to $2 x-y=0$ is
$\frac{x-1}{\cos \theta}=\frac{y-1}{\sin \theta}$, where $\tan \theta=2$
i.e. $\frac{x-1}{1 / \sqrt{5}}=\frac{y-1}{2 / \sqrt{5}}$

Since P is translated in the first quadrant through a unit distance, therefore the coordinates of P are given by
$\frac{x-1}{1 / \sqrt{5}}=\frac{y-1}{2 \sqrt{2}}= \pm 1$
$\Rightarrow x=1 \pm \frac{1}{\sqrt{5}}, y=1 \pm \frac{2}{\sqrt{5}}$
Hence, the coordinates of P are $\left(1 \pm \frac{1}{\sqrt{5}}, 1 \pm \frac{2}{\sqrt{5}}\right)$
342 (a)
Given, $\frac{1}{a} x^{2}+\frac{1}{b} y^{2}+2 \frac{1}{h} x y=0$
$\therefore m_{1}+m_{2}=-\frac{\frac{2}{h}}{\frac{1}{b}}=\frac{-2 b}{h} \ldots$ (i)
and $m_{1} m_{2}=\frac{\frac{1}{a}}{\frac{1}{b}}=\frac{b}{a} \ldots$ (ii)
Also given $m_{2}=2 m_{1}$
$\Rightarrow 3 m_{1}=\frac{-2 b}{h}$ [from Eq.(i)]....(iii)
and $2 m_{1}^{2}=\frac{b}{a}$ [from Eq.(ii)]....(iv)
From Eqs. (iii) and (iv),
$\frac{9 m_{1}^{2}}{2 m_{1}^{2}}=\frac{4 b^{2}}{h^{2}} \times \frac{a}{b}$
$\Rightarrow \frac{9}{8}=\frac{b a}{h^{2}}$ or $a b: h^{2}=9: 8$
344 (a)
Clearly the point $(3,0)$ does not lie on the diagonal $x=2 y$. Let m be the slope of a side passing through $(3,0)$. Then, its equation is
$y-0=m(x-3) \quad . . .(i)$
Since the angle between a diagonal and a side of a square is $\pi / 4$. Therefore, angle between $x=2 y$ and $y-0=m(x-3)$ is also $\pi / 4$. Consequently, we have
$\tan \frac{\pi}{4}= \pm \frac{m-1 / 2}{1+m / 2} \Rightarrow m=3,-\frac{1}{3}$
Substituting the values of m in (i), we obtain
$y-3 x+9=0$ and $3 y+x-3=0$ as the required sides
345
(a)

Any line which is perpendicular to $\sqrt{3} \sin \theta+2 \cos \theta=\frac{4}{r}$ is
$\sqrt{3} \sin \left(\frac{\pi}{2}+\theta\right)+2 \cos \left(\frac{\pi}{2}+\theta\right)=\frac{k}{r}$
Since, it is passing through $\left(-1, \frac{\pi}{2}\right)$
$\therefore \sqrt{3} \sin \pi+2 \cos \pi=\frac{k}{-1} \Rightarrow k=2$
On putting $k=2 \mathrm{n}$ Eq. (i), we get
$\sqrt{3} \cos \theta-2 \sin \theta=\frac{2}{r}$
$\Rightarrow 2=\sqrt{3} r \cos \theta-2 r \sin \theta$
346 (c)
Slope of refracted ray is
$-\tan 60^{\circ}=-\sqrt{3}$

It passes through $(1,0)$
$\therefore y=-\sqrt{3}(x-1)$
$\Rightarrow \sqrt{3} x+y-\sqrt{3}=0$
347
(c)

It is simple way to take a point from the option and finding the distance, which is equal to $\sqrt{85}$
Taking point $P(5,7)$
$B P=\sqrt{(5-3)^{2}+(7+2)^{2}}$
$=\sqrt{4+81}=\sqrt{85}$
Hence, option (c) is correct

348
(b)

Equation of the line $\frac{a x}{c-1}+\frac{b y}{c-1}+1=0$ has two independent parameters. It can
pass through a fixed point if it contains only one independent parameter. Now , there must be one relation between $\frac{a}{c-1}$ and $\frac{b}{c-1}$ independent of a, b and c so that $\frac{a}{c-1}$ can be expressed in terms of $\frac{b}{c-1}$ and straight line contains only one independent parameter. Now, that given relation can be expressed as $\frac{5 a}{c-1}+\frac{4 b}{c-1}=\frac{t-20 c}{c-1}$ RHS in independent of c if $t=20$

On comparing given equation with standard equation, we get
$a=1, b=-1, c=-2, h=0, \mathrm{~g}=-1 / 2, f=\lambda / 2$
Given equation represent a pair of straight line,
$\therefore a b c+2 f g h-a f^{2}-b \mathrm{~g}^{2}-c h^{2}=0$
$\Rightarrow 2+0-\frac{\lambda^{2}}{4}+\frac{1}{4}=0$
$\Rightarrow \frac{\lambda^{2}}{4}=\frac{9}{4} \Rightarrow \lambda= \pm 3$
350
(b)

The equation of given curve is
$y=\sqrt{x}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{x}}$
Slope of line at $\left(x_{1}, y_{1}\right), m_{1}=\frac{1}{2 \sqrt{x_{1}}}$
and let line parallel to x-axis is $y=k$...(ii)
Whose slope, $\quad m_{2}=0$
Since, 45° is the angle between the line and the curve.
$\therefore \tan 45^{\circ}=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \Rightarrow 1=\left|\frac{\frac{1}{2 \sqrt{x_{1}}}-0}{1}\right| \Rightarrow x_{1}=\frac{1}{4}$
$\therefore y_{1}=\frac{1}{2} \quad$ [from Eq.(i)]
\therefore Required line is $y=\frac{1}{2}$ [from Eq.(ii)]
$351 \quad$ (c)
(1)Let A and B be the points where the lines $2 x+3 y+19=0$ meets the coordinates axes and let C and O be the points where the line $9 x+6 y-17=0$ meet the coordinate axes

Then, $O A=\frac{19}{2}, O B=\frac{19}{2}$,
$O C=\frac{17}{9}$ and $O D=\frac{17}{6}$
Thus, the segments $A O C$ and $B O D$ intersect at such that $O A \cdot O C=O B \cdot O D$. Hence, A, B, C, D are concyclic
(2) Distance of $(2,-5)$ from the line $3 x+y+5-0$ is
$\frac{2 \times 3-5+5}{\sqrt{3^{2}+1^{2}}}=\frac{6}{\sqrt{10}}$
and distance of $(-1,4)$ from the line $3 x+y+5=0$ is
$\frac{3(-1)+4+5}{\sqrt{10}}=\frac{6}{\sqrt{10}}$
Thus, the points are equidistant from the given line
Hence, both of these statements are correct
352 (a)
On comparing the given equation with the standard form of equation, we get $a=1, h=2$ and $b=1$ Let θ is the angle between them, then
$\tan \theta=\frac{2 \sqrt{h^{2}-a b}}{a+b}$
$\therefore \tan \theta=\frac{2 \sqrt{2^{2}-1}}{1+1}=\frac{2 \sqrt{4-1}}{2}=\sqrt{3}$
$\Rightarrow \theta=\tan ^{-1}(\sqrt{3})=60^{\circ}$
354
(d)

Here, $a=6,2 h=-1, b=4 c$
$\therefore m_{1}+m_{2}=\frac{1}{4 c}, m_{1} m_{2}=\frac{6}{4 c}$
One line of given pair of line is $3 x+4 y=0$
Slope of line $=-\frac{3}{4}=m_{1}$ (say)
$\therefore-\frac{3}{4}+m_{2}=\frac{1}{4 c}$
$\Rightarrow m_{2}=\frac{1}{4 c}+\frac{3}{4}$
$\therefore\left(-\frac{3}{4}\right)\left(\frac{1}{4 c}+\frac{3}{4}\right)=\frac{6}{4 c}$
$\Rightarrow 1+3 c=\frac{-6 \times 4}{3}$
$\Rightarrow 3 c=-9 \Rightarrow c=-3$
355 (b)
The equation $4 x^{2}+8 x y+k y^{2}-9=0$ represents a pair of straight lines, if
$(4)(k)(-9)-(-9)(4)^{2}=0 \Rightarrow k=4$
356 (b)
Slope of the line segment joining $(-4,6)$ and $(8,8)$ is
$\frac{8-6}{8+4}=\frac{2}{12}=\frac{1}{6}$
\therefore Slope of line perpendicular to it.
$m=-\frac{1}{1 / 6}=-6$

As the line bisecting it.
\therefore Mid point of this line is $\left(\frac{8-4}{2}, \frac{8+6}{2}\right)=(2,7)$
\therefore Required equation is
$y-7=-6(x-2)$
$\Rightarrow y+6 x-19=0$
357
(c)

Let (h, k) be the point of intersection of the line $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b$. Then, $h \cos \alpha+k \sin \alpha=a$
$h \sin \alpha-k \cos \alpha=b$
Squaring and adding (i) and (ii), we get
$(h \cos \alpha+k \sin \alpha)^{2}+(h \sin \alpha-k \cos \alpha)^{2}=a^{2}+b^{2}$
$\Rightarrow h^{2}+k^{2}=a^{2}+b^{2}$
Hence, locus of (h, k) is $x^{2}+y^{2}=a^{2}+b^{2}$
358
(a)

Equations of the bisectors of the angles between the lines $x^{2}-2 m x y-y^{2}=0$ are given by
$\frac{x^{2}-y^{2}}{1-(-1)}=\frac{x y}{-m} \Rightarrow x^{2}+\frac{2}{m} x y-y^{2}=0$
Since (i) and $x^{2}-2 n x y-y^{2}=0$ represent the same pair of lines.
$\therefore \frac{1}{1}=\frac{2 / m}{-2 n}=\frac{-1}{-1} \Rightarrow m n=-1 \Rightarrow m n+1=0$
359
(d)

Point of intersection of $\frac{x}{a}+\frac{y}{b}=1$ and
$\frac{x}{b}+\frac{y}{a}=1$ is $\left(\frac{a b}{a+b}, \frac{a b}{a+b}\right)$
\therefore Equation of line joining $(0,0)$ and
$\left(\frac{a b}{a+b}, \frac{a b}{a+b}\right)$ is $x=y$ ie, $x-y=0$
360 (c)
Here, $a=4, b=11$ and $h=-12$
$\therefore h^{2}-a b=(-12)^{2}-4 \times 11=100$
\therefore The two lines represented by given equation will be real and distinct which represent a pair of straight lines passing through the origin.

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | A | C | A | A | C | C | B | C | B |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | C | A | D | D | B | B | C | A | D | C |

