Class : XIth

Topic :-STRAIGHT LINES

321 (a)
Let $B\left(x_{1}, x_{1}\right)$ and $C\left(x_{2}, y_{2}\right)$ be two vertices and
$P\left(\frac{x_{1}+1}{2}, \frac{y_{1}-2}{2}\right)$ lies on perpendicular bisector $x-y+5=0$
$\therefore \frac{x_{1}+1}{2}-\frac{y_{1}-2}{2}=-5$
$\Rightarrow x_{1}-y_{1}=-13 \ldots$ (i)

Also, $P N$ is perpendicular to $A B$.
$\therefore \frac{y_{1}+2}{x_{1}-1} \times 1=-1$
$\Rightarrow x_{1}+y_{1}=-1$
On solving Eqs. (i) and (ii), we get
$x_{1}=-7, y_{1}=6$
\therefore The coordinates of B are $(-7,6)$ Similarly, the coordinates of C are $\left(\frac{11}{5}, \frac{2}{5}\right)$
Hence, the equation of $B C$ is
$y-6=\frac{\frac{2}{5}-6}{\frac{11}{5}+7}(x+7)$
$\Rightarrow y-6=\frac{-14}{23}(x+7)$
$\Rightarrow 14 x+23 y-40=0$
322 (b)
Points $(a, 0)$ and $(0, b)$ will satisfy the equation of line $p x-q y=r$
$\Rightarrow a p=r,-b q=r$
$\therefore a+b=\frac{r}{p}-\frac{r}{q}=r\left(\frac{q-p}{p q}\right)$
323 (d)
We have,
$2 x-y+4=0$ and $6 x-3 y-5=0$
$\Rightarrow 2 x-y+4=0$ and $2 x-y-5 / 3=0$
This distance between these two parallel lines is given by
$d=\left|\frac{4+5 / 3}{\sqrt{2^{2}+(-1)^{2}}}\right|=\frac{17 \sqrt{5}}{15}$
324
(b)

If the lines given by $a x^{2}+5 x y+2 y^{2}=0$ arte mutually perpendicular, then
$a+2=0 \Rightarrow a=-2$
326
(b)

Since, the coordinates of three vertices A, B and C are $\left(\frac{5}{3},-\frac{4}{3}\right),(0,0)$ and $\left(-\frac{2}{3}, \frac{7}{3}\right)$ respectively, also the mid point of $A C$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$, therefore the equation of line passing through $\left(\frac{1}{2}, \frac{1}{2}\right)$ and $(0,0)$ is given by $x-y=0$, which is the required equation of another diagonal, so
$a=1, b=-1$, and $c=0$
327 (d)
Let m be the slope of required line
$\therefore\left|\frac{m-(-1)}{1+m(-1)}\right|=1$
$\Rightarrow \frac{m+1}{1-m}= \pm 1$
$\Rightarrow m+1=1-m, m+1=-1+m$
$\Rightarrow m=0, m=\infty$
\therefore Equation of the line through (1, 1)is $y-1=0, x-1=0$

328 (a)

Let the equation of line which is perpendicular to $5 x-2 y=7$, is
$2 x+5 y=\lambda \ldots$ (i)
The point of intersection of given lines is $(14,-9)$
Since, the Eq. (i) is passing through the point $(14,-9)$
$\therefore 2(14)+5(-9)=\lambda \Rightarrow \lambda=-17$
\therefore Eq. (i) becomes
$2 x+5 y+17=0$
329
(a)

Let the vertices of the triangle be $A(5,-2), B(-1,2)$ and $C(1,4)$
The equation of the altitude through $B(-1,2)$ is
$y+2=-(x-5) \Rightarrow x+y-3=0$
The equation of the altitude through $B(-1,2)$
$y-2=\frac{2}{3}(x+1) \Rightarrow 2 x-3 y+8=0$
Solving (i) and (ii), we obtain that the coordinates of the orthocentre are $(1 / 5,14 / 15)$
330 (a)

Since the origin and the point $(1,-3)$ lie on the same side of $x+2 y-11=0$ and on the opposite side of $3 x-6 y-5=0$. Therefore, the bisector of the angle containing $(1,-3)$ is the bisector of that angle which does not contain the origin and is given by
$\frac{-x-2 y+11}{\sqrt{5}}=-\left(\frac{-3 x+6 y+5}{\sqrt{45}}\right) \Rightarrow 3 x=19$
ALITER Re-write the two equations in such a way that the values of the expressions on the left hand side of the equality for $x=1, y=-3$ become positive. Now, find the bisector corresponding to positive sign
331
(c)

For the two lines $24 x+7 y-20=0$ and $4 x-3 y-2=0$, the angle bisectors are
given by $\frac{24 x+7 y-20}{25}= \pm \frac{4 x-3 y-2}{5}$
Talking positive sign, we get
$2 x+11 y-5=0$
\therefore The given three lines are concurrent with one line bisecting the angle between the other two.

332
 (b)

Let a and b be non-zero real numbers.
Therefore, the given equation
$\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)=0$ implies either
$x^{2}-5 x y+6 y^{2}=0$
$\Rightarrow(x-2 y)(x-3 y)=0$
$\Rightarrow x=2 y$ and $x=3 y$
Represent two straight lines passing through origin.
or $a x^{2}+b y^{2}+c=0$
When $c=0$ and a and b are of same signs, then
$a x^{2}+b y^{2}+c=0$
$\Rightarrow x=0$ and $y=0$
Which is a point specified as the origin.
When $a=b$ and c is of sign opposite to that of a, then
$a x^{2}+b y^{2}+c=0$ represents a circle.
Hence, the given equation,
$\left(a x^{2}+b y^{2}+c\right)\left(x^{2}-5 x y+6 y^{2}\right)=0$
may represents two straight lines and a circle.
333
(c)

Equation of intersection of line is
$(100 x+50 y-1)+\lambda(75 x+25 y+3)=0$
$\Rightarrow(100+75 \lambda) x+(50+25 \lambda) y=-3 \lambda \ldots(\mathrm{i})$
$\Rightarrow \frac{x}{\frac{1-3 \lambda}{100+75 \lambda}}+\frac{y}{\frac{1-3 \lambda}{50+25 \lambda}}=1$
According to the given condition
$\frac{1-3 \lambda}{100+75 \lambda}=\frac{1-3 \lambda}{50+25 \lambda}$
$\Rightarrow 50=-50 \lambda \Rightarrow \lambda=-1$
\therefore From Eq. (i), we get
$25 x+25 y-4=0$
334
(a)

The coordinates of the point dividing the line segment joining $(2,3)$ and $(-1,2)$ internally in the ratio $3: 4$ are
$\left(\frac{3 \times-1+4 \times 2}{3+4}, \frac{3 \times 2+4 \times 3}{3+4}\right)=\left(\frac{5}{7}, \frac{18}{7}\right)$
This point lies on the line $x+2 y=\lambda$
$\therefore \frac{5}{7}+\frac{36}{7}=\lambda \Rightarrow \lambda=\frac{41}{7}$
335
(d)

Slopes of given lines are $m_{1}=\sqrt{3}$ and $m_{2}=\frac{1}{\sqrt{3}}$
$\therefore \tan \theta=\left|\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+1}\right|=\left|\frac{3-1}{2 \sqrt{3}}\right|=\frac{1}{\sqrt{3}}$
$\Rightarrow \theta=30^{\circ}$
336
(c)

The coordinates of the vertices of the rectangle are $A(1,4), B(6,4), C(6,10), D(1,10)$. The equation of diagonal $A C$ is
$y-4=\frac{10-4}{6-1}(x-1) \Rightarrow 6 x-5 y+14=0$
337
(d)

Let the equation of perpendicular line to the line
$3 x-2 y=6$ is $3 y+2 x=c \ldots$ (i)
Since, it passes through $(0,2)$
$\therefore c=6$
On putting the value of c in Eq. (i) we get $3 y+2 x=6$
$\Rightarrow \frac{x}{3}+\frac{y}{2}=1$
Hence, x-intercept is 3 .
338
(a)

Given equation is $x^{2}-1005 x+2006=0$
$\Rightarrow(x-2)(x-1003)=0$
$\Rightarrow x=2, \quad x=1003$
\therefore Required distance between the lines
= 1003 - 2 = 1001
339
(a)

We have,
$\sqrt{3} x^{2}-4 x y+\sqrt{3} y^{2}=0$
$\Rightarrow(\sqrt{3} x-y)(x-\sqrt{3} y)=0$
$\Rightarrow \sqrt{3} x-y=0, x-\sqrt{3} y=0$
$\Rightarrow y=\sqrt{3} x, y=\frac{1}{\sqrt{3}} x$

These lines make 60° and 30° angles respectively with x-axis. If they are rotated about the origin by $\pi / 6$ i.e. 30° in anticlockwise direction, then they make 90° and 60° angles respectively with x-axis.
So, their equations in new position are $x=0$ and $y=\sqrt{3} x$. The combined equation of these two lines is
$x(\sqrt{3} x-y)=0$ or, $\sqrt{3} x^{2}-x y=0$
340 (b)
Le the equations of the sides $A B, B C, C D$ and $D A$ of the parallelogram $A B C D$ be respectively
$3 x-4 y+1=0 \ldots$ (i) $4 x-3 y-2=0 \ldots$ (ii)
$3 x-4 y+3=0 \ldots$ (iii) $4 x-3 y-1=0 \ldots$ (iv)
We know that the area of the parallelogram formed by the lines
$a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0, a_{1} x+b_{1} y+d_{1}=0$ and $a_{2} x+b_{2} y+d_{2}=0$ is given by $\left|\frac{\left(c_{1} d_{1}\right)\left(c_{2}-d_{2}\right)}{\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|}\right|$
Hence, are Δ of the given parallelogram is given by
$\Delta=\left|\frac{(3-1) \times(-1+2)}{\left|\begin{array}{ll}3 & -4 \\ 4 & -3\end{array}\right|}\right|=\frac{2}{7}$ sq. units

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | A | B | D | B | B | B | D | A | A | A |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | C | B | C | A | D | C | D | A | A | B |
| | | | | | | | | | | |

