Class: XIth
Date :

Solutions

Topic :-STRAIGHT LINES

301
(b)

If the points $(\alpha, 2+\alpha)$ and $\left(\frac{3 \alpha}{2}, \alpha^{2}\right)$ are on the opposite sides of $2 x+3 y-6=0$, then
$(2 \alpha+6+3 \alpha-6)\left(3 a+3 \alpha^{2}-6\right)<0$
$\Rightarrow 15 \alpha\left(\alpha^{2}+\alpha-2\right)<0$
$\Rightarrow \alpha(\alpha+2)(\alpha-1)<0 \Rightarrow \alpha \in(-\infty,-2) \cup(0,1)$

302
(c)

Let $y=m_{1} x, y=m_{2} x$ be the lines represented by $a x^{2}+2 h x y+b y^{2}=0$. Then,
$m_{1}+m_{2}=\frac{-2 h}{b}$ and $m_{1} m_{2}=\frac{a}{b}$
Let $y=m_{1}{ }^{\prime} x$ and $y=m_{2}{ }^{\prime} x$ be new positions of $y=m_{1} x$ and $y=m_{2} x$ respectively. Then, $y=m_{1} x$ is
perpendicular to $y=m_{1}{ }^{\prime} x$
$\therefore m_{1} m_{1}^{\prime}=-1 \Rightarrow m_{1}^{\prime}=-\frac{1}{m_{1}}$
Similarly, we have $m_{2}^{\prime}=-\frac{1}{m_{2}}$
So, the new lines are $y=-\frac{1}{m_{1}} x$ and $y=-\frac{1}{m_{2}} x$ and their combined equation is
$\left(m_{1} y+x\right)\left(m_{2} y+x\right)=0$
$\Rightarrow m_{1} m_{2} y^{2}+x^{2}+x y\left(m_{1}+m_{2}\right)=0$
$\Rightarrow \frac{a}{b} y^{2}+x^{2}+x y\left(\frac{-2 h}{b}\right)=0$
$\Rightarrow b x^{2}-2 h x y+a y^{2}=0$
303
(c)

Here, in the figure it is shown that a ray of light passing through the point $Q(1,2)$ and reflected from a point $P(\alpha, 0)$ on x-axis towards point $R(5,3)$.

\therefore slope of incident ray (ie, before reflection) is given by
$\tan (\pi-\theta)=\frac{0-2}{\alpha-1}$
$\Rightarrow \tan \theta=\frac{2}{\alpha-1}$
Similarly, slope of reflected ray (ie, after reflection) is given by
$\Rightarrow \tan \theta=\frac{3}{5-\alpha}$
From Eq. (i) and (ii),
$\frac{2}{\alpha-1}=\frac{3}{5-\alpha}$
$\Rightarrow 10-2 \alpha=3 \alpha-3 \Rightarrow \alpha=\frac{13}{5}$
304 (c)
The equation of any line passing through $(1,-10)$ is $y+10=m(x-1)$. Since makes equal angles, $\operatorname{say} \theta$, with the given lines. Therefore,
$\tan \theta=\frac{m-7}{1+7 m}=-\frac{m-(-1)}{1+m(-1)} \Rightarrow m=\frac{1}{3}$ or, -3
Hence, the equations of third side are
$y+10=\frac{1}{3}(x-1)$ and $y+10=-3(x-1)$
i.e. $x-3 y-31=0$ and $3 x+y+7=0$

ALITER Required lines are parallel to the angle bisectors
305
(c)

The line L is $x+y=2$. The line perpendicular to L and passing through $(1 / 2,0)$ is $x-y=1$ and the equation of y-axis is $x=0$. Solving these three equations in pairs we get the points as $(0,2)$
,$(0,-1 / 2)$ and $(5 / 4,3 / 4)$. Therefore, the area Δ of the given triangle is given by
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}0 & 2 & 1 \\ 0 & -\frac{1}{2} & 1 \\ \frac{5}{4} & \frac{3}{4} & 1\end{array}\right|=\frac{25}{16}$ sq. units
306
(c)

On comparing the given equation with standard equation, we get $a=12$ and $b=a$, for perpendicular lines coefficient of $x^{2}+$ coefficient of $y^{2}=0$
$\therefore 12+a=0 \Rightarrow a=-12$

307
 (d)

From figure refracted ray makes an angle of 75° with positive direction of x-axis and passes through the point $(1,0)$

\therefore Its equation is
$(y-0)=\tan \left(45^{\circ}-30^{\circ}\right)(x-1)$
or $y=(2-\sqrt{3})(x-1)$
308 (a)
The equation $12 x^{2}+7 x y-p y^{2}-18 x+q y+6=0$ will represent a pair of perpendicular lines
$-72 p-\frac{63}{2} q-3 q^{2}+81 p-\frac{147}{2}=0$ and $12-p=0$
$\Rightarrow 2 q^{2}+21 q-23=0$ and $p=12$
$\Rightarrow q=1$ and $p=12$
309
(a)

Given, $|x+y|=4$
If point (a, a) lies between the lines, then
$|a+a|=4 \Rightarrow|a|=2$
310 (a)
Since, $A P=B P$ and $P M$ is perpendicular to the line
$2 x-y+3=0$
Where, M is the mid point $A B$

Therefore, its slope is $\left(-\frac{1}{2}\right)$
\therefore Equation of line $P M$ is $y-2=-\frac{1}{2}(x-1)$
$\Rightarrow 2 y+x-5=0$
Solving Eqs. (i) and (ii), we get the mid point of $A B$ is
$M\left(-\frac{1}{5}, \frac{13}{5}\right)$
311
(b)

Since, a, b, c are in HP
$\therefore \frac{2}{b}=\frac{1}{a}+\frac{1}{c}$
$\Rightarrow \frac{1}{a}-\frac{2}{b}+\frac{1}{c}=0$
So, straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes throught a fixed point $(1,-2)$

312
 (c)

From the given equations, we get
$m^{2}+a m+2=0$
Since, m is real, $a^{2} \geq 8 \Rightarrow|a| \geq 2 \sqrt{2}$
So, least value of $|a|$ is $2 \sqrt{2}$

We have,
$a^{2} x^{2}+2 h(a+b) x y+b^{2} y^{2}=0$
$a x^{2}+2 h x y+b y^{2}=0$
The equation of the bisectors of the angles between the pair of lines given in (i) is
$\frac{x^{2}-y^{2}}{a^{2}-b^{2}}=\frac{x y}{h(a+b)} \Rightarrow \frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$
This is same as the equation of the bisectors of the angles between the lines given in (ii). Thus, two pairs of straight lines are equally inclined to each other
316
(c)

We have,
$x y+2 x+2 y+4=0$
$\Rightarrow(x+2)(y+2)=0 \Rightarrow x+2=0, y+2=0$
Solving the equations of the sides of the triangle we obtain the coordinates of the vertices as A $(-2,0), B(0,-2) C(-2,-2)$. Clearly, $\triangle A B C$ is a right angled triangle with right angle at C.
Therefore, the centre of the circumcircle is the mid-point of $A B$ whose coordinates are $(-1,-1)$ 317
(d)

Focus is $|x|+|y|=1$ which separately represents equation of straight lines.
318 (c)
Equation of line is
$y=m x+4$
\therefore Required distance $=\frac{4}{\sqrt{1+m^{2}}}$
320
(d)

Let $x_{1}=x, x_{2}=x r, x_{3}=x r^{2}$
and $y_{1}=y, y_{2}=y r, y_{3}=y r^{2}$
$\because x_{1}, x_{2}, x_{3}$ and y_{1}, y_{2}, y_{3} are in GP.
$\because \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{2}}{x_{3}-x_{2}}=\frac{y_{1}-y_{3}}{x_{1}-x_{3}}$
\therefore The points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ lies on a straight line.

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | B | C | C | C | C | C | D | A | A | A |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | C | C | B | A | C | D | C | C | D |
| | | | | | | | | | | |

