Class: XIth

Topic :-STRAIGHT LINES

281
(c)

The given lines are
$4 x+3 y-11=0$ and $4 x+3 y-\frac{15}{2}=0$
\therefore Required distance $=\frac{\left|-11+\frac{15}{2}\right|}{\sqrt{4^{2}+3^{2}}}=\frac{7}{10}$
282
(d)

These lines cannot be the sides of a rectangle as none of these are parallel nor they are perpendicular.
Now, for concurrent $\left|\begin{array}{lll}1 & 2 & -3 \\ 3 & 4 & -7 \\ 2 & 3 & -4\end{array}\right|$
$=1(-16+21)-2(2)-3(1)$
$\neq 0$
Hence, these are not concurrent.
Opposite side of the parallelogram are
$x^{2}-5 x+6=0$ and $y^{2}-6 y+5=0$
$\Rightarrow(x-2)(x-3)=0$ and $(y-1)(y-5)=0$
$\Rightarrow x-2=0, x-3=0$ and $y-1=0, y-5=0$
\therefore Vertices are $(3,5),(2,5),(2,1)$ and $(3,1)$

283
 (b)

The perpendicular distance of $(1,3)$ from the line $3 x+4 y=5$ is 2 units while,
$\sec ^{2} \theta+2 \operatorname{cosec}^{2} \theta \geq 3\left[\operatorname{as~}^{2} \sec ^{2} \theta, \operatorname{cosec}^{2} \theta \geq 1\right]$
So, there will be two such points on the line
284
(b)

The equation of line passing through the point of intersection of
$\frac{x}{\alpha}+\frac{y}{\beta}=1$ and $\frac{x}{\beta}+\frac{y}{\alpha}=1$ is
$\left(\frac{x}{\alpha}+\frac{\lambda}{\beta}-1\right)+\lambda\left(\frac{x}{\beta}+\frac{\lambda}{\alpha}-1\right)=0$
$\Rightarrow x\left(\frac{1}{\alpha}+\frac{\lambda}{\beta}\right)+\lambda\left(\frac{1}{\beta}+\frac{\lambda}{\alpha}\right)-\lambda-1=0$

This meets the coordinate axes at $A\left(\frac{\lambda+1}{\frac{1}{\alpha}+\frac{\lambda}{\beta}}, 0\right)$ and $B\left(0, \frac{\lambda+1}{\frac{1}{\beta}+\frac{\lambda}{\alpha}}\right)$
Let (h, k) be the mid point of $A B$. Then, $h=\frac{1}{2}\left(\frac{\lambda+1}{\frac{1}{\beta}+\frac{\lambda}{\alpha}}\right)$ and $k=\frac{1}{2}\left(\frac{\lambda+1}{\frac{1}{\beta}+\frac{1}{\alpha}}\right)$
On eliminating λ from these two equations, we get
$2 h k(\alpha+\beta)=\alpha \beta(h+k)$
Hence, the locus of (h, k) is $2 x y(\alpha+\beta)=\alpha \beta(x+y)$
285 (a)
The coordinates of a point of intersection of given lines are $(1,1)$
The equation of the perpendicular to the line $3 x+2 y+5=0$ is $2 x-3 y+\lambda=0$. It is also passes through (1,1).
$\therefore 2-3+\lambda=0 \Rightarrow \lambda=1$
\therefore Required equation of line is $2 x-3 y+1=0$
286 (a)
Let line be $x+2 y+\lambda=0$
$\therefore \lambda=\frac{-5 \times 6+1 \times 9}{7}=-3 \quad\left(\lambda=\frac{m c_{2}+n c_{1}}{m+n}\right)$
So, required line is $x+2 y-3=0$
287
(c)

The equation of line perpendicular to line
$3 x-y+5=0$ is $x+3 y+\lambda=0 \ldots$..(i)
Also it passes through $(-2,-4)$.
$\therefore-2-12+\lambda=0$
$\Rightarrow \lambda=14$
\therefore Required equation of line is $x+3 y+14=0$ [from Eq. (i)]
288
(c)

We have,
$3 x^{2}+x y-y^{2}-3 x+6 y+k=0$
Comparing this equation with
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$, we have
$a=3, b=-1, h=1 / 2, c=k, f=3$ and $g=-3 / 2$
Equation (i) will represent a pair of straight lines if
$a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0$
$\Rightarrow-3 k-\frac{9}{2}-27+\frac{9}{4}-\frac{k}{2}=0$
$\Rightarrow-\frac{13 k}{3}-\frac{117}{4}=0 \Rightarrow k=-9$
289
(b)

Since, the required lines make an angle 45° either above the line or below the line

$$
\begin{aligned}
& \therefore \text { Required slopes are } \\
& m=90^{\circ}, 180^{\circ} \\
& \therefore y-1=\tan 90^{\circ}(x-1) \\
& \Rightarrow x=1
\end{aligned}
$$

and $y-1=\tan 180^{\circ}(x-1)$
$\Rightarrow y=1$

290
(b)

Slope of the line segment joining $(-4,6)$ and $(8,8)$ is given by
$=\frac{8-6}{8+4}=\frac{1}{6}$
\therefore Slope of line perpendicular to it is
$m=-\frac{1}{1 / 6}=-6$
As the line bisecting it.
\therefore Mid point of this line is $\left(\frac{8-4}{2}, \frac{8+6}{2}\right)=(2,7)$
\therefore Required equation is
$y-7=-6(x-2)$
$\Rightarrow y+6 x-19=0$
291
(b)

We have, $x^{2}-3 y^{2}=0 \ldots$ (i) and $x=4 \ldots$ (ii)

From Eqs. (i) and (ii), we get
$y^{2}=\frac{16}{3}$
$\Rightarrow y= \pm \frac{4}{\sqrt{3}}$
\therefore Three sides of triangle are $x-\sqrt{3} y=0, x+\sqrt{3} y=0$ and
$x-4=0 i e, O P=O Q=P Q=\frac{8}{\sqrt{3}}$
\therefore Triangle is an equilateral triangle
292
(a)

We observe that none of the vertices $A(-2,1)$ and $B(2,4)$ lie on the side $3 x-4 y-10=0$.
Therefore,

Length of one side of the rectangle is
$A B=\sqrt{(-2-2)^{2}+(1-4)^{2}}=5$
Also,
Length of the other side
$=$ Length of the perpendicular drawn from $A(-2,1)$ on $3 x-4 y-10=0$
$=\left|\frac{-6-4-10}{\sqrt{9+16}}\right|=4$
\therefore Area of the rectangle $=5 \times 4=20$ sq. units

293
 (b)

Let a and b be the intercepts made by the straight line on the axes. Then, according to questions
$a+b=\frac{a b}{2}$
$\Rightarrow \frac{2}{a}+\frac{2}{b}=1$
On comparing with $\frac{x}{a}+\frac{y}{b}=1$, we get
$\Rightarrow x=2, y=2$
Hence, straight line passes through the point $(2,2)$
294 (c)
Two sides $x-3 y=0$ and $3 x+y=0$ are perpendicular to each other. Therefore, its orthocentre is the point of intersection of $x-3 y=0$ and $3 x+y=0 i e,(0,0)$.
So, the line $3 x-4 y=0$ passes through the orthocentre of triangle
295
(b)

Let the coordinates of C be (x, y). Then,
$B C=5 \Rightarrow x^{2}+(y+1)^{2}=5^{2}$
Now, $A B \perp A C$
$\Rightarrow \frac{y-3}{x-2} \times \frac{4}{2}=-1$
$\Rightarrow 2 y-6=-x+2 \Rightarrow x=-2 y+8$
From (i) and (ii), we have,
$(-2 y+8)^{2}+(y+1)^{2}=5^{2}$
$\Rightarrow 5 y^{2}-30 y+40=0$
$\Rightarrow y^{2}-6 y+8=0 \Rightarrow y=2,4$
Putting $y=2$ and $y=4$ in (ii), we get $x=4, x=0$ respectively. Hence, the coordinates of C are (4,2) or $(0,4)$
296 (c)
On comparing the given equation with standard equation, we get
$a=\cos \theta-\sin \theta, b=\cos \theta+\sin \theta, h=\cos \theta$
$\tan \phi=\frac{2 \sqrt{\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}}{\cos \theta-\sin \theta+\cos \theta+\sin \theta}=\frac{2 \sin \theta}{2 \cos \theta}$
$\Rightarrow \tan \phi=\tan \theta \Rightarrow \phi=\theta$
297
(d)

Let m be the required slope
$\therefore\left|\frac{m-3}{1+3 m}\right|=1$
$\Rightarrow \frac{m-3}{1+3 m}= \pm 1$
$\Rightarrow m-3=1+3 m$
and $m-3=-1-3 m$
$\Rightarrow m=-2, m=\frac{1}{2}$
298
(a)

Given equation of line are
$x+2 y-3=0 \ldots$ (i)
$2 x+3 y-4=0 \ldots$ (ii)
$3 x+4 y-5=0 \quad \ldots$ (iii)
and $4 x+5 y-6=0$
On solving Eqs. (i) and (ii), we get
$x=-1, y=2$
From, Eq. (iii),
$3(-1)+4(2)-5=0 \Rightarrow 0=0$
From Eq. (iv),
$4(-1)+5(2)-6=0 \Rightarrow 0=0$
Hence, given lines are concurrent.
299
(a)

The equation of a line passing through $P(4,1)$ and slope -2 is
$\frac{x-4}{-\frac{1}{\sqrt{5}}}=\frac{y-1}{\frac{2}{\sqrt{5}}}\left[\because \tan \theta=-2 \Rightarrow \cos \theta=-\frac{1}{\sqrt{5}}, \sin \theta=\frac{2}{\sqrt{5}}\right]$
Suppose it cuts $x+y-8=0$ at Q such that $P Q=r$. Then, the coordinates of Q are given by
$\frac{x-4}{-\frac{1}{\sqrt{5}}}=\frac{y-1}{\frac{2}{\sqrt{5}}}=r \Rightarrow x=4-\frac{r}{\sqrt{5}}, y=1+\frac{2 r}{\sqrt{5}}$
Since Q lies on the line $x+y-8=0$
$\therefore 4-\frac{r}{\sqrt{5}}+1+\frac{2 r}{\sqrt{5}}-8=0 \Rightarrow r=3 \sqrt{5}$
Hence, required distance $=3 \sqrt{5}$ units
300
(d)

Let $P\left(x_{1}, y_{1}\right)$ be the image of point $Q(4,-3)$
Mid point of $P Q$ is $\left(\frac{x_{1}+4}{2}, \frac{y_{1}-3}{2}\right)$. This point lies on $y=x$
$\therefore \frac{x_{1}+4}{2}=\frac{y_{1}-3}{2} \Rightarrow x_{1}-y_{1}=-7$.
Slope of $P Q=\frac{-3-y_{1}}{4-x_{1}}$ and slope of $y=x$ is 1
$\because P Q$ is perpendicular to $y=x$
$\therefore\left(\frac{-3-y_{1}}{4-x_{1}}\right)(1)=-1$
$\Rightarrow y_{1}+x_{1}=1$...(ii)
On solving Eqs. (i) and (ii), we get $x_{1}=-3, y_{1}=4$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	C	D	B	B	A	A	C	C	B	B
Q.	11	12	13	14	15	16	17	18	19	20
A.	B	A	B	C	B	C	D	A	A	D

