Class : XIth

Topic :-STRAIGHT LINES

261
(d)

Let the equation of line is $y=m x+c$
Given, $m=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$ and $c=-2$
$\therefore y=\frac{x}{\sqrt{3}}-2 \Rightarrow \sqrt{3} y-x+2 \sqrt{3}=0$
262
(c)

Here, $a=1, b=9, c=-4, h=-3, g=\frac{3}{2}$ and $f=-\frac{9}{2}$
\therefore Required distance $=2 \sqrt{\frac{g^{2}-a c}{a(a+b)}}=2 \sqrt{\frac{9 / 4+4}{10}}=\sqrt{\frac{5}{2}}$
263
(b)

The coordinates of A and B are $(0,12)$ and $(8,0)$ respectively. The equation of the perpendicular bisectors of $A B$ is
$y-6=\frac{2}{3}(x-4) \Rightarrow 2 x-3 y+10=0$
Equation of a line passing through $(0,-1)$ and parallel to x-axis is $y=-1$. This line meets line (i) at C. Therefore, the coordinates of C are $(-13 / 2,-1)$. Hence, the area A of the triangle $A B C$ is given by
$\Delta=\frac{1}{2}\left|\begin{array}{ccc}0 & 12 & 1 \\ 8 & 0 & 1 \\ -13 / 2 & -1 & 1\end{array}\right|=91$ sq. units
264 (c)
Let (h, k) be the coordinates of the fourth vertex.
Then,
$\Delta_{1}=\frac{1}{2}\left|\begin{array}{ll}6 & 7 \\ 1 & 2\end{array}\right|=\frac{5}{2}, \Delta_{2}=\frac{1}{2}\left|\begin{array}{cc}7 & -1 \\ 2 & 0\end{array}\right|=1$,
$\Delta_{3}=\frac{1}{2}\left|\begin{array}{cc}-1 & h \\ 0 & k\end{array}\right|=-\frac{k}{2}$ and $\Delta_{4}=\frac{1}{2}\left|\begin{array}{ll}h & 6 \\ k & 1\end{array}\right|=\frac{1}{2}(h-6 k)$
We have,
$\left|\Delta_{1}+\Delta_{2}+\Delta_{3}+\Delta_{4}\right|=4$
$\Rightarrow\left|\frac{5}{2}+1-\frac{k}{2}+\frac{h-6 k}{2}\right|=4$
$\Rightarrow|7+h-7 k|=8$
$\Rightarrow 7+h-7 k= \pm 8$
$\Rightarrow h-7 k-1=0, h-7 k+15=0$
$\Rightarrow(h-7 k-1)(h-7 k+15)=0$
$\Rightarrow(h-7 k)^{2}+14(h-7 k)-15=0$
Hence, the locus of (h, k) is $(x-7 y)^{2}+14(x-7 y)-15=0$
265 (a)
The equation of the line joining $A(a, 0)$ and $B(0, b)$ is $\frac{x}{a}+\frac{y}{b}=1$. Clearly, point $(3 a,-2 b)$ lies on this line
266 (c)
Lines are $[(l+\sqrt{3} m) x+(m-\sqrt{3} l) y][(l-\sqrt{3} m) x+(m+\sqrt{3} l) y]=0$
and $l x+m y+n=0$
$\therefore m_{1}=-\frac{(l+\sqrt{3} m)}{(m-\sqrt{3} l)}, m_{2}=-\frac{(l-\sqrt{3} m)}{(m+\sqrt{3} l)}$
and $m_{3}=-\frac{l}{m}$
$\therefore \theta_{1}=\tan ^{-1}\left[\frac{-\left(\frac{l+\sqrt{3} m}{m-\sqrt{3} l}\right)+\frac{l}{m}}{1+\left(\frac{l+\sqrt{3} m}{m-\sqrt{3} l}\right) \cdot \frac{l}{m}}\right]=60^{\circ}$
and $\theta_{2}=\tan ^{-1}\left[\frac{-\left(\frac{l-\sqrt{3} m}{m+\sqrt{3}}\right)+\frac{l}{m}}{1+\left(\frac{l-\sqrt{3} m}{m+\sqrt{3}}\right)\left(\frac{l}{m}\right)}\right]=60^{\circ}$
Hence, triangle is equilateral.
267
(c)

Here, $a=1, \quad h=-3, \quad b=9, \quad \mathrm{~g}=\frac{3}{2}, \quad f=-\frac{9}{2}$ and $c=-4$
\therefore Required distance $=\left|2 \sqrt{\frac{f^{2}-b c}{b(a+b)}}\right|$
$\left.=|2| \sqrt{\frac{\left(-\frac{9}{2}\right)^{2}+(9)(4)}{9(9+1)}} \right\rvert\,$
$=\left|2 \sqrt{\frac{225}{4 \times 90}}\right|=\left|\frac{2 \sqrt{5}}{2 \sqrt{2}}\right|=\sqrt{\frac{5}{2}}$
268
(c)

We have,
$\angle P R Q=\pi / 2$
\therefore Slope of $R P \times$ Slope of $R Q=-1$
$\Rightarrow \frac{y-1}{x-3} \times \frac{5-1}{6-3}=-1 \Rightarrow 3 x+4 y=13$
Now, Area of $\triangle R P Q=7$
$\Rightarrow \frac{1}{2}\left|\begin{array}{lll}x & y & 1 \\ 3 & 1 & 1 \\ 6 & 5 & 1\end{array}\right|= \pm 7 \Rightarrow 3 y-4 x=5 \Rightarrow 3 y-4 x=-23$
Solving, (i) and (ii), we get two points
269
(c)

We have,
$x^{3}-6 x^{2} y+11 x y^{2}-6 y^{3}=0$
$\Rightarrow(x-y)(x-2 y)(x-3 y)=0$
$\Rightarrow x-y=0, x-2 y=0, x-3 y=0$
Thus, the slopes of the lines represented by the given equation are $1, \frac{1}{2}, \frac{1}{3}$ which are in H.P.

270

(a)

Equation of the line passing through $(-4,6)$ and $(8,8)$ is
$(y-6)=\left(\frac{8-6}{8+4}\right)(x+4)$
$\Rightarrow 6 y-x-40=0$
Now, equation of any line perpendicular to Eq. (i), is
$6 x+y+\lambda=0 \ldots$...ii)
This line passes through the mid point of $(-4,6)$ and $(8,8)$, which is
$\left(\frac{-4+8}{2}, \frac{6+8}{2}\right) i e,(2,7)$
$\therefore 6 \times 2+7+\lambda=0 \Rightarrow \lambda=-19$
On putting $\lambda=-19$ in Eq. (ii), we get the required line which is $6 x+y-19=0$.
271
(c)

Given sides of a triangle are $x-3 y=0,4 x+3 y=5$ and $3 x+y=0$
Since, the lines $x-3 y=0$ and $3 x+y=0$ are perpendicular to each other, therefore it is right angled triangle and the point of intersection (0,0) is the orthocentre of a triangle.
\therefore The line $3 x-4 y=0$ is passes through origin $(0,0)$ ie, it is passes through orthocentre.
273
(c)

If (α, β) be the image of $(4,1)$ w.r.t. $y=x-1$, then $(\alpha, \beta)=(2,3)$ say point Q

After translation through a distance 1 unit along the positive direction of x-axis at the point whose coordinate are $R \equiv(3,3)$. After rotation through are angle $\pi / 4$ about the origin in the anticlockwise direction, then R goes to $R^{\prime \prime}$ such that
$O R=O R^{\prime \prime}=3 \sqrt{2}$
\therefore The coordinates of the final point are $(0,3 \sqrt{2})$
275 (d)

The point of intersection of $x+2 y-3=0$ and $2 x+3 y-4=0$ is $(-1,2)$ which satisfies $4 x+5 y-6=0$. But, it does not satisfy $3 x+4 y-7=0$
Hence, only three lines are concurrent
277
(d)
$\because P(1,2)$ is mid point of $A B$, therefore coordinate of A and B respectively $(2,0)$ and $(0,4)$.
\therefore Equation of line $A B$ is
$y-0=\frac{4}{-2}(x-2) \Rightarrow 2 x+y=4$
278 (c)
On comparing the given line with
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
we get,
$a=\lambda, \quad h=-5, \quad b=12, \mathrm{~g}=\frac{5}{2}, f=-8, c=-3$
It represents a pair of line, if
$\lambda \times 12 \times(-3)+2(-8)\left(\frac{5}{2}\right)(-5)-\lambda(-8)^{2}-12\left(\frac{5}{2}\right)^{2}+3(-5)^{2}=0$
$\Rightarrow-36 \lambda+200-64 \lambda-75+75=0$
$\Rightarrow 100 \lambda=200 \Rightarrow \lambda=2$

279
 (d)

Equation of a line perpendicular to $5 x-y+1=0$ is $x+5 y+c=0$. This meets the axes at $A(-c, 0)$ and $B(0,-c / 5)$.
Now,
Area of $\triangle O A B=5 \Rightarrow \frac{1}{2}(-c)\left(-\frac{c}{5}\right)=5 \Rightarrow c= \pm 5 \sqrt{2}$
Hence, the required line is $x+5 y \pm 5 \sqrt{2}=0$
280 (b)
Let $h=u \cos \alpha \cdot t, k=u \sin \alpha \cdot t-\frac{1}{2} g t^{2}$
On eliminating t, we get
$k=h \tan \alpha-\frac{1}{2} g \frac{h^{2}}{u^{2} \cos ^{2} \alpha}$
Hence, locus of (h, k) is
$y=x \tan \alpha-\frac{1}{2} g \frac{x^{2}}{u^{2} \cos ^{2} \alpha}$, which is a parabola

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	C	B	C	A	C	C	C	C	A
Q.	11	12	13	14	15	16	17	18	19	20

A.	C	D	C	A	D	C	D	C	D	B

