Class : XIth
Date :

Solutions

Topic :-STRAIGHT LINES

241
(d)

Let the equation of the line be $\frac{x}{a}+\frac{y}{b}=1$. This cuts the coordinates axes at $A(a, 0)$ and $B(0, b)$
The coordinates of the mid-point of the intercept AB between the axes are $(a / 2, b / 2)$
$\therefore \frac{a}{2}=1, \frac{b}{2}=2 \Rightarrow a=2, b=4$
Hence, the equation of the line is $\frac{x}{2}+\frac{y}{4}=1$ or, $2 x+y=4$

242
 (b)

We know that the coordinates of the incentre of triangle formed by the points $O(0,0) A(a, 0)$ and $B(0, b)$ are
$\left(\frac{a b}{a+b+\sqrt{a^{2}+b^{2}}}, \frac{a b}{a+b+\sqrt{a^{2}+b^{2}}}\right)$
Here, $a=4$ and $b=3$
So, the Coordinates are $(12 / 12,12 / 12)=(1,1)$
243
(a)

To make the given curves $x^{2}+y^{2}=4$ and $x+y=a$ homogeneous.
$x^{2}+y^{2}-4\left(\frac{x+y}{a}\right)^{2}=0$
$\Rightarrow a^{2}\left(x^{2}+y^{2}\right)-4\left(x^{2}+y^{2}+2 x y\right)=0$
$\Rightarrow x^{2}\left(a^{2}-4\right)+y^{2}\left(a^{2}-4\right)-8 x y=0$
Since, this is a perpendicular pair of straight lines.
$\therefore a^{2}-4+a^{2}-4=0$
$\Rightarrow a^{2}=4 \Rightarrow a= \pm 2$
Hence, required set of a is $\{-2,2\}$.
244 (b)
Equation of bisector between the lines $x^{2}-2 p x y-y^{2}=0$ is
$\frac{x^{2}-y^{2}}{1-(-1)}=\frac{x y}{-p}$
$\Rightarrow x^{2}+\frac{2 x y}{p}-y^{2}=0$
Above lines will be same as the $x^{2}-2 q x y-y^{2}=0$.
$\therefore \frac{1}{p}=-q$
$\Rightarrow p q=-1$
245
(d)

Since the diagonals of a rhombus bisect each other at right angle. Therefore, $B D$ passes through $(3,4)$ and is perpendicular to $A C$. So, its equation is
$y-4=-1(x-3) \Rightarrow x+y-7=0$
247
(c)

Slope of given line is $\frac{1}{\sqrt{3}}$, it's angle from positive x-axis is 30°. Now, lines making an angle 30° from it are either x-axis $(i e, y=0)$ or makes and angle 60° with positive x-axis $(i e, y=\sqrt{3} x+\lambda)$
248
(d)

Let the slopes be m, m^{2}
$\therefore m+m^{2}=\frac{-2 h}{b}$ and $m m^{2}=\frac{a}{b}$
$\Rightarrow m^{3}=\left(\frac{a}{b}\right)$
Now, $\quad m(1+m)=\frac{-2 h}{b}$
On cubing both sides, we get
$m^{3}\left[1+m^{3}+3 m(1+m)\right]=-\frac{8 h^{3}}{b^{3}}$
$\Rightarrow \frac{a}{b}\left[1+\frac{a}{b}+3\left(\frac{-2 h}{b}\right)\right]=\frac{-8 h^{3}}{b^{3}}$
$\Rightarrow \frac{b+a}{b}-\frac{6 h}{b}=\frac{-8 h^{3}}{a b^{2}}$

$\Rightarrow b+a+\frac{8 h^{3}}{a b}=6 h$
$\Rightarrow \frac{b+a}{h}+\frac{8 h^{2}}{a b}=6$
250 (d)
The equation of line $B C$ is $x+y+4=0$. Therefore, equation of a line parallel to $B C$ is $x+y+k=0$.
This is at a distance $1 / 2$ from the origin
$\therefore\left|\frac{k}{\sqrt{2}}\right|=\frac{1}{2} \Rightarrow k= \pm \frac{1}{\sqrt{2}}$
Since $B C$ and the required line are on the same side of the origin. Therefore, $k= \pm \frac{1}{\sqrt{2}}$
Hence, the equation of the required lines is $x+y+\frac{1}{\sqrt{2}}=0$
251 (b)
Slope of the given lines are
$m_{1}=\frac{2+2}{3-1}=2$ and $m_{2}=-\frac{1}{2}$

Now, $m_{1} \times m_{2}=2 \times \frac{-1}{2}=-1$
\therefore Lines are perpendicular, so angle is $\frac{\pi}{2}$
252 (c)
Given equation of curve is
$y^{2}-x^{2}+2 x-1=0$
Here, $a=-1, b=1, c=-1, h=0, g=1, f=0$
$\therefore \Delta=a b c+2 f g h-a f^{2}-b \mathrm{~g}^{2}-c h^{2}$
$=(-1)(1)(-1)+2(0) 1(0)-0-1-0$
$=1-1=0$
\therefore Given equation is equation of pair of straight lines.

253 (c)

Let the points be $A(3,-4)$ and $B(5,2)$ and mid point of $A B=(4,-1)$
It is given that the bisecting line intersect the coordinate axes in the ratio 2:1
\therefore Point of coordinate axes are $(2 k, 0)$ and $(0, k)$. The equation of line passing through the above point is
$y-0=\frac{k-0}{0-2 k}(x-2 k)$
$\Rightarrow y=-\frac{1}{2}(x-2 k) \quad \ldots$ (i)
Since, it passing through the mid point of $A B$ ie, $(4,-1)$
$\therefore-1=-\frac{1}{2}(4-2 k) \Rightarrow k=1$
On putting the value of k in Eq. (i), we get
$y=-\frac{1}{2}(x-2) \Rightarrow x+2 y=2$
254
(d)

Let the coordinates of the third vertex C be (h, k).
Then, Area of $A B C=20$ sq. units
$\Rightarrow \frac{1}{2}\left|\begin{array}{ccc}h & k & 1 \\ -5 & 0 & 1 \\ 3 & 0 & 1\end{array}\right|= \pm 20 \Rightarrow k= \pm 5$
Since, (h, k) lies on $x-y=2$ Therefore,
$h-k=2$
Solving (i) and (ii), we find that the coordinates of the third vertex are $(-3,-5)$ or, $(7,5)$
255
(c)

Given lines are $a x+b y+c=0$
and a, b, c satisfy the relation
$3 a+2 b+4 c=0$
Only option (c) satisfy both condition.
$\because a \cdot \frac{3}{4}+b \cdot \frac{1}{2}+c=0$
$\Rightarrow 3 a+2 b+4 c=0$
256 (a)
Here, $a_{1}=1, b_{1}=-\sqrt{3}, a_{2}=\sqrt{3}, b_{2}=1$

Now, $a_{1} a_{2}+b_{1} b_{2}=1 \cdot \sqrt{3}+(-\sqrt{3}) \cdot 1=0$
\therefore Lines are perpendicular, ie, $\theta=90^{\circ}$
257
(a)

Equation of $O A$ is $y=\sqrt{3} x$. Equation of $O B$ is $y=-\sqrt{3} x$ and equation of $A B$ is $y=1$

Clearly, from figure $\triangle O A B$ is an equilateral triangle.
258
(a)

The point of intersection of the lines $3 x+y+1=0$ and $2 x-y+3=0\left(-\frac{4}{5}, \frac{7}{5}\right)$. The equation of line which makes equal intercepts with axes is $x+y=a$
$\therefore-\frac{4}{5}+\frac{7}{5}=a \Rightarrow a=\frac{3}{5}$
\therefore Equation of line is $x+y-\frac{3}{5}=0$
or $5 x+5 y-3=0$
259
(c)

Let the line be $x / a+y / a=1$. It passes through $(1,-2)$
$\therefore 1 / a-2 / a=1 \Rightarrow a=-1$
Hence, the equation of the line is $x+y=-1$
260
(a)

On solving line Ist and IInd, and Ist and IIIrd, we get $A(-3,4)$ and $B\left(-\frac{3}{5}, \frac{8}{5}\right)$.

The equation of perpendicular line to the line $4 x-y+4=0$ and passes through the point $A(-3,4)$ is $x+4 y-13=0$
Also, the equation of perpendicular line to the line $2 x+3 y=6$ and passes through a point B $\left(-\frac{3}{5}, \frac{8}{5}\right)$ is
$3 x-2 y+5=0$
On solving Eq. (i) and (ii), we get the orthocentre $\left(\frac{3}{7}, \frac{22}{7}\right)$
Which is lies in Ist quadrant.

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | D | B | A | B | D | C | C | D | A | D |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | B | C | C | D | C | A | A | A | C | A |
| | | | | | | | | | | |

