Class : XIth
Date :

Topic :-STRAIGHT LINES

221
(c)

Let the coordinate of M are $\left(x_{1}, y_{1}\right)$
Since, the line $P M$ is perpendicular to the given line $x+y=3$
$\therefore \frac{y_{1}-3}{x_{1}-2} \times(-1)=-1$
$\Rightarrow y_{1}-3=x_{1}-2$
$\Rightarrow x_{1}-y_{1}+1=0$
$\frac{q^{P(2,3)}}{M\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)} \mathrm{x}+\mathrm{y}=3$
and also the point lies on the given line.
$\therefore x_{1}+y_{1}-3=0$
On solving Eqs. (i) and (ii), we get
$x_{1}=1, y_{1}=2$
\therefore The coordinates of M are $(1,2)$.

222
 (b)

The equation of line in new position is
$y-0=\tan 15^{\circ}(x-2)$
$\Rightarrow y=(2-\sqrt{3})(x-2)$
$\Rightarrow(2-\sqrt{3}) x-y-4+2 \sqrt{3}=0$

223

(d)

Here $a=1, h=1, f=-4 a, \mathrm{~g}=-4 a, c=-9 a$
Now, required distance
$=\left|2 \sqrt{\frac{f^{2}-b c}{b(b+a)}}\right|$
$=\left|2 \sqrt{\frac{16 a^{2}+9 a^{2}}{1(1+1)}}\right|$
$=\left|2 \sqrt{\frac{25 a^{2}}{2}}\right|=\frac{5 a}{\sqrt{2}} \cdot 2$
$=5 \sqrt{2} a$
224 (c)
Let $A B C$ be the equilateral triangle with centroid $O(0,0)$ and sides $B C$ as $x+y-2=0$.
$\therefore O D=\left|\frac{0+0-2}{\sqrt{1^{2}+1^{2}}}\right|=\sqrt{2} \Rightarrow O A=2 \sqrt{2}$
Since $A D$ is perpendicular to $B C$. Therefore,
Slope of $A D=1$
$\Rightarrow A D$ makes 45° with X-axis

Clearly, A lies on $O A$ at a distance of $2 \sqrt{2}$ units from O. So, its coordinates are given by $\frac{x-0}{\cos \pi / 4}=\frac{y-0}{\sin \pi / 4}= \pm 2 \sqrt{2} \Rightarrow x= \pm 2, y= \pm 2$
But, O and A lie on the same side of $x+y-2=0$
Hence, the coordinates of A are $(-2,-2)$
225
(c)

The intersection point of lines $x-2 y=1$ and $x+3 y=2$ is $\left(\frac{7}{5}, \frac{1}{5}\right)$

Since, required is parallel to $3 x+4 y=0$
Therefore, the slope of required line $=-\frac{3}{4}$
\therefore Equation of required line which passes through $\left(\frac{7}{5}, \frac{1}{5}\right)$
and having slope $-\frac{3}{4}$, is
$y-\frac{1}{5}=\frac{-3}{4}\left(x-\frac{7}{5}\right)$
$\Rightarrow \frac{3 x}{4}+y=\frac{21}{20}+\frac{1}{5}$
$\Rightarrow \frac{3 x+4 y}{4}=\frac{21+4}{20}$
$\Rightarrow 3 x+4 y=5$
$\Rightarrow 3 x+4 y-5=0$
226
(b)

Required ratio is given by
$-\frac{3 \times 1+3-9}{3 \times 2+7-9}$
$=\frac{3}{4} i e, 3: 4$ internally
227 (d)
The lines $4 x-7 y+10=0$ and $7 x+4 y-15=0$ are perpendicular and their point of intersection is $(1,2)$.
Hence, the orthocentre is at $(1,2)$
228
(b)

Since the distance between the parallel lines $l x+m y+\mathrm{n}=0$ and $l x+m y+n^{\prime}=0$ is same as the distance between parallel lines $m x+l y+n=0$ and $m x+l y+n^{\prime}=0$.
Therefore, the parallelogram is a rhombus.
Also, the diagonals of a rhombus are at right angles. Therefore, the required angle is a right angle.
229
(a)

Vertices are interception points of line
$x+y=2 \sqrt{2}$
with $y=x \tan \left(105^{\circ}\right)$ or $y=x \tan \left(165^{\circ}\right)$
(lines through centroid)
$y=-x \tan 75^{\circ}$
$y=-x \tan 15^{\circ}$
For the interception point of Eqs. (i) and (ii)
$x-x(2+\sqrt{3})=2 \sqrt{2}$
$\Rightarrow-x(1+\sqrt{3})=2 \sqrt{2}$
$\Rightarrow x=-\frac{2 \sqrt{2}(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}$
$\Rightarrow x=\sqrt{2}-\sqrt{6}$
$\therefore y=-(\sqrt{2}-\sqrt{6})(2+\sqrt{3})$
$=-(2 \sqrt{2}+\sqrt{6}-2 \sqrt{6}-3 \sqrt{2}$
$=\sqrt{2}+\sqrt{6}$
and its image about $y=x$ is $(\sqrt{2}+\sqrt{6}, \sqrt{2}-\sqrt{6})$
230 (a)
It is given that the lines $a x+2 y+1=0, b x+3 y+1=0$ and $c x+4 y+1=0$ are concurrent
$\therefore\left|\begin{array}{lll}a & 2 & 1 \\ b & 3 & 1 \\ c & 4 & 1\end{array}\right|=0$
$\Rightarrow-a+2 b-c=0 \Rightarrow 2 b=a+c \Rightarrow a, b, c$ are in A.P.
231
(b)

Let (h, k) be the centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$ and (1,0). Then,
$3 h=a \cos t+b \sin t+1$ and $3 k=a \sin t-b \cos t$
$\Rightarrow(3 h-1)^{2}+(3 k)^{2}=a^{2}+b^{2}$
Hence, the locus of (h, k) is $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
234
(c)

The equation representing the bisectors of the angles between the lines given by $a x^{2}+2 h x y+b y^{2}$ $=0$ is
$\frac{x^{2}-y^{2}}{a-b}=\frac{x y}{h}$
$\Rightarrow h x^{2}-(a-b) x y-h y^{2}=0$
The combined equation of the bisectors of the angles between these lines is
$\frac{x^{2}-y^{2}}{h+h}=\frac{x y}{-\frac{(a-b)}{2}} \Rightarrow(a-b)\left(x^{2}-y^{2}\right)+4 h x y=0$
235
(a)

Given, $\sqrt{3} \sin \theta+2 \cos \theta=\frac{4}{r}$
Any line perpendicular to Eq.(i) is
$\Rightarrow \sqrt{3} \cos \theta-2 \sin \theta=\frac{k}{r}$
It passes through $\left(-1, \frac{\pi}{2}\right)$, then
$\sqrt{3} \cos \frac{\pi}{2}-2 \sin \frac{\pi}{2}=\frac{k}{-1}$
$-2=\frac{k}{-1} \Rightarrow k=2$
Thus, the equation is
$\sqrt{3} \cos \theta-2 \sin \theta=\frac{2}{r}$
$\Rightarrow \sqrt{3} r \cos \theta-2 r \sin \theta=2$
236 (b)
$P=\left|\frac{a(4-3+4)+b(2+6-3)}{\sqrt{(2 a+b)^{2}+(a-2 b)^{2}}}\right|=\sqrt{10}$
$\Rightarrow 25(a+b)^{2}=10\left(5 a^{2}+5 b^{2}\right)$
$\Rightarrow 25(a-b)^{2}=0 \Rightarrow a=b$
Only one line which is $3 x-y+1=0$
237
(b)

Let $\left(t, \frac{5-2 t}{11}\right)$ be a point on the line $2 x+11 y=5$
Then,
$p_{1}=\left|\frac{24 t+7\left(\frac{5-2 t}{11}\right)-20}{\sqrt{24^{2}+7^{2}}}\right|=\frac{|50 t-37|}{55}$
and,
$p_{2}=\left|\frac{4 t-3\left(\frac{5-2 t}{11}\right)-2}{\sqrt{4^{2}+(-3)^{2}}}\right|=\frac{|50 t-37|}{55}$
Clearly, we have $p_{1}=p_{2}$
ALITER Clearly, $2 x+11 y=5$ is the angle bisector of the two lines. Therefore, $p_{1}=p_{2}$

The equation of lines are $\pm x \pm y=0$. Now, we take the lines $x+y=0$ and $x-y=0$.
\therefore The equation of bisector of the angles between these lines are
$\frac{x+y}{\sqrt{1+1}}= \pm \frac{x-y}{\sqrt{1+1}}$
$\Rightarrow x+y= \pm(x-y)$
Taking positive sign, $x+y=x-y \Rightarrow y=0$
Taking negative sign, $x+y=-(x-y) \Rightarrow x=0$
239
(c)

Given pair of lines are
$x^{2}-3 x y+2 y^{2}=0$
and $x^{2}-3 x y+2 y^{2}+x-2=0$
$\therefore \quad(x-2 y)(x-y)=0$
and $(x-2 y+2)(x-y-1)=0$
$\Rightarrow x-2 y=0, x-y=0$ and $x-2 y+2=0, x-y-1=0$
Since, the lines $x-2 y=0, x-2 y+2=0$ and $x-y=0, x-y-1=0$ are parallel.
Also, angle between $x-2 y=0$ and $x-y=0$ is not 90°
\therefore It is a parallelogram.

240
 (b)

Let a and b the intercepts made by the straight line on the axes
Given that, $a+b=\frac{a b}{2}$
$\Rightarrow \frac{2 a+2 b}{a b}=1 \Rightarrow \frac{2}{a}+\frac{2}{b}=1$
On comparing with $\frac{x}{a}+\frac{y}{b}=1$, we get
$x=2, y=2$
\therefore Required point is $(2,2)$
So, the straight line passes through the point $(2,2)$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	C	B	D	C	C	B	D	B	A	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	B	B	A	C	A	B	B	C	C	B

